Effects of Consumption of Cement in Mechanical Properties of Lightweight Concrete Containing Brazilian Expanded Clay

2013 ◽  
Vol 368-370 ◽  
pp. 925-928 ◽  
Author(s):  
Andressa Fernanda Angelin ◽  
Lubienska Cristina L.J. Ribeiro ◽  
Marta Siviero Guilherme Pires ◽  
Ana Elisabete P.G.A. Jacintho ◽  
Rosa Cristina Cecche Lintz ◽  
...  

Concrete is one of the oldest building materials known to humankind. From 1824, with the advent of Portland cement, concrete assumed a prominent place among the construction materials, due to large amounts of strength, durability and versatility it offered compared to other products, allowing the molding of various forms architectural. Until the early 80s, the concrete remained only as a mixture of cement, aggregates and water, however, in recent decades, due to the development of new techniques and products, the concrete has been undergoing constant changes. The concrete with lightweight aggregates have been used since the beginning of the last century, with low values of density (< 2000 kg/m3), demonstrating the great potential of using this material in several areas of construction [. With the objective of analyzing the influence of the consumption of cement in conventional concrete and light, were molded, tested and compared body-of-evidence containing two different amounts of cement consumption: a) 350 kg/m3 and b) 450 kg / m3. The results were compared with those obtained by other researchers, as well as with [ and [.

2016 ◽  
Vol 881 ◽  
pp. 336-340
Author(s):  
Márcio Alexandre Marques ◽  
Maria Lúcia Pereira Antunes ◽  
Marcos Minussi Bini ◽  
Marcos Vinicius de Castro

Transforming industrial wastes into construction materials through recycling is a feasible alternative that contributes to reduce the consumption of natural resources. Besides, modern civil construction seeks strong lightweight building materials. Due to their low density, wind turbine blade manufacturing waste and EPS post-consumer packaging can be used for this purpose. Such work uses X-ray imaging to evaluate the spatial distribution of these wastes in Portland cement concrete. Test specimens were produced containing wind turbine blade waste replacing part of the gravel content, and EPS waste replacing part of the sand content. X-ray images of the test specimens reveal that the waste is distributed homogeneously in the matrix. Furthermore, the mechanical strength of these test specimens meets the requirements of the Brazilian technical standards for non-load bearing concrete blocks.


Author(s):  
Stephen A. Cross ◽  
Mohamed Nagib Abou-Zeid ◽  
John B. Wojakowski ◽  
Glenn A. Fager

Over the past years there has been an increasing interest in recycling construction materials, particularly hot-mix asphalt (HMA) and portland cement concrete pavements (PCCP). To this end the Kansas Department of Transportation (KDOT) participated in Demonstration Project 47, Recycling Portland Cement Concrete Pavement, by recycling a moderately D-cracked concrete pavement and monitoring the performance over a 10-year period. The recycled concrete pavement (RCP) aggregate was evaluated in four test sections consisting of two control sections, one test section of portland cement-treated base (CTB) with RCP aggregate, and one test section using RCP aggregate in the PCCP and CTB. An HMA shoulder using RCP as coarse aggregate was also constructed. The test sections were monitored over a 10-year period for performance including faulting, roughness, load transfer, and friction measurements. Faulting, roughness, performance level, and joint distress measurements from KDOT's 1995 pavement condition survey were used to compare the performance of the recycled sections with PCCP of similar age and traffic in the same area of the state. All test sections performed well, with the CTB and PCCP sections with RCP aggregates showing slightly more distress.


2013 ◽  
Vol 467 ◽  
pp. 257-261
Author(s):  
Andressa Fernanda Angelin ◽  
Lubienska Cristina L.J. Ribeiro ◽  
Marta Siviero Guilherme Pires ◽  
Rosa Cristina Cecche Lintz ◽  
Leandro Mouta Trautwein ◽  
...  

Concrete is one of the oldest building materials and applying known to humankind. From 1800s, with the advent of Portland cement concrete has taken a prominent place among the construction materials due to large values of strength, durability and versatility it offered compared to other products, allowing the molding of the various architectural forms. Until the early 80s, the modern concrete remained only as a mixture of cement, aggregates and water, however, in recent decades, due to the development of new techniques and products, the concrete has been undergoing constant changes [. This article discusses the application of technology of lightweight aggregates for concrete production, for use in building elements such as structural panels or fence. Developed an experimental program for the analysis of concrete, with the primary objective to characterize the properties of the parts in the hardened state. The results showed that the lightweight aggregate concrete with Brazilian expanded clay are extremely suitable for the production of prefabricated elements slender, mainly due to the reduction in density and excellent performance in mechanical properties, especially modulus of elasticity, despite the low toughness of lightweight aggregate.


2015 ◽  
Vol 802 ◽  
pp. 112-117 ◽  
Author(s):  
Ali Yousefi ◽  
Norazura Muhamad Bunnori ◽  
Mehrnoush Khavarian ◽  
Taksiah A. Majid

The potential properties of carbon nanotube-cement based materials strongly depend on the dispersion of carbon nanotubes (CNTs) within the cement matrix and the bonding between CNTs and the hydrated cement. The homogeneous dispersion of CNTs in the cement matrix yet is one of the main challenges due to strong van der Waals forces between nanotubes. In this study, a polycarboxylic ether based superplasticizer and ultra-sonication technique was used for dispersion of multi-walled carbon nanotubes (MWCNTs). Portland cement concrete specimens with different concentrations of MWCNTs (0.04 and 0.1 % by the weight of cement), with and without the presence of superplasticizer were investigated. Compressive strength test results revealed a significant improvement in mechanical properties of sample containing 0.1 % MWCNTs and 0.2 % superplasticizer. Moreover, field emission scanning electron microscopy (FESEM) images of fractured surfaces of hardened specimens showed a good dispersion of MWCNTs within the cement matrix. This method was developed to facilitate the uniform dispersion of MWCNTs in the cementitious concrete for better reinforcement in nanoscale and mechanical properties enhancement by transfer of load between the nanotubes and matrix.


2018 ◽  
Vol 7 (4.37) ◽  
pp. 138
Author(s):  
Asst. Prof. Dr. Khawla H. H. Shubber ◽  
Eng. Sajjad Hashim Mohamed

This research represents a trial of understanding and improving mechanical properties of base or subbase granular materials, used in pavement construction, stabilized with Portland cement known as cement treated base (CTB) in terms of density, optimum water content (O.W.C), and compression Strength of three curing ages (3, 7, 28) days under different situations. Different Portland cement percent of (0, 5, 7, 10, 12, and 15) % by weight were added to selected base course granular materials (type B according to local standard specification in Iraq). Results showed that the density of mixture increase with increasing added cement percent, while O.W.C takes its maximum value around 7% cement content, and compression strength increase with increasing cement content and curing age. Then effect of replacing 50% of natural granular materials by waste Portland cement concrete (WPCC) was investigated on the results of (0, 7& 15)% cement content on density, O.W.C and compression strength in the three curing ages. Results reveled although density of mixture cooperating WPCC for 0% cement content was higher, CTB of natural granular material were denser. On the other hand compressive strength decrease in case of using WPCC for all percent cement added and curing ages. Finally, effect of soaking in water on CTB with (7 &15)% cement compressive strength of three curing ages was studied, under three period of soaking (1 week, 2 weeks, &one month). Test results exposed that, CTB Compressive strength increase with increasing soaking period but still less than that of un-soaked and for all curing ages. For each test stage mathematics relationships with acceptable correlation were presented proofing test results tendency.  


2005 ◽  
Vol 28 (1) ◽  
pp. 155-159 ◽  
Author(s):  
Moetaz M. El‐Hawary ◽  
Abdullateef M. AlKhaleefi ◽  
Hisham I. Abdel‐Fattah

2008 ◽  
Vol 400-402 ◽  
pp. 121-124
Author(s):  
Zong Hui Zhou ◽  
Ling Chao Lu ◽  
Xing Kai Gao ◽  
Xin Cheng

In this paper, preparation and mechanical properties of Alite-calcium barium sulphoaluminate (Alite-C2.75B1.25A3 ) cement concrete were studied. The results showed the compressive strength of Alite-C2.75B1.25A3 cement concrete was much higher than that of Portland cement concrete, especially the early-age compressive strength. The 24-hour compressive strength of Alite-C2.75B1.25A3 cement concrete could reach 22.81Mpa for w/c=0.45, 17.29Mpa for w/c=0.50 and 17.04Mpa for w/c=0.55 respectively. They were about 50 to 65 percent higher than those of Portland cement concrete. The 7-day compressive strength could reach about 80 to 90 percent of 28-day strength for Alite-C2.75B1.25A3 cement concrete. The 28-day strength could reach 55.85Mpa for w/c=0.45, 48.01Mpa for w/c=0.50 and 44.21Mpa for w/c=0.55 respectively. The results of SEM showed the interfaces between the hardened cement paste and aggregates in Alite-C2.75B1.25A3 cement concrete were more compact than those in Portland cement concrete. Distribution of particulate bulk was more uniformity and a majority of clinker particles was wrapped by hydrated gel in Alite-C2.75B1.25A3 concrete. And, the structure of Alite-C2.75B1.25A3 cement concrete was much more compact than that of Portland cement concrete.


2018 ◽  
Vol 159 ◽  
pp. 01018
Author(s):  
Muslikh ◽  
N. K. Anggraini ◽  
D. Hardjito ◽  
Antonius

This paper discusses the behavior of geopolymer concrete subjected to passive confinement under compression loads. The confinement is induced by the use of lateral hoops, assembled from un-deformed reinforcing bars. To compare the effect of confinement, identical specimens were produced using conventional concrete with the similar concrete compressive strength. The cylinder specimens were 100 mm in diameter and 200 mm in height, and the hoops were placed on the outer most fibers of the cylinders, perpendicular to the line of loading, with no concrete cover. The parameters analyzed in this study were the steel bar to concrete volumetric ratio, the hoop spacings and the steel yield stresses. The experimental results show that unconfined geopolymer concrete were very brittle compared to the unconfined Portland cement concrete. The strength enhancement (K value) of the confined geopolymer concrete was higher than K value of Portland cement concrete. Confined geopolymer concrete also has better deformability compared to the confined Portland cement concrete. The average confinement effectiveness of geopolymer concrete also has a higher value than that commonly used in the Indonesian Concrete Standard (SNI), that is 4.1. The results were further assessed to the most recent experimental test results conducted in this area.


Sign in / Sign up

Export Citation Format

Share Document