Dispersion of Multi-Walled Carbon Nanotubes in Portland Cement Concrete Using Ultra-Sonication and Polycarboxylic Based Superplasticizer

2015 ◽  
Vol 802 ◽  
pp. 112-117 ◽  
Author(s):  
Ali Yousefi ◽  
Norazura Muhamad Bunnori ◽  
Mehrnoush Khavarian ◽  
Taksiah A. Majid

The potential properties of carbon nanotube-cement based materials strongly depend on the dispersion of carbon nanotubes (CNTs) within the cement matrix and the bonding between CNTs and the hydrated cement. The homogeneous dispersion of CNTs in the cement matrix yet is one of the main challenges due to strong van der Waals forces between nanotubes. In this study, a polycarboxylic ether based superplasticizer and ultra-sonication technique was used for dispersion of multi-walled carbon nanotubes (MWCNTs). Portland cement concrete specimens with different concentrations of MWCNTs (0.04 and 0.1 % by the weight of cement), with and without the presence of superplasticizer were investigated. Compressive strength test results revealed a significant improvement in mechanical properties of sample containing 0.1 % MWCNTs and 0.2 % superplasticizer. Moreover, field emission scanning electron microscopy (FESEM) images of fractured surfaces of hardened specimens showed a good dispersion of MWCNTs within the cement matrix. This method was developed to facilitate the uniform dispersion of MWCNTs in the cementitious concrete for better reinforcement in nanoscale and mechanical properties enhancement by transfer of load between the nanotubes and matrix.

2021 ◽  
pp. 002199832199945
Author(s):  
Dinesh Kumar ◽  
Suneev Anil Bansal ◽  
Navin Kumar ◽  
Prashant Jindal

The present work has been aimed to synthesize Polyurethane (PU)/Multi-Walled Carbon Nanotubes (MWCNTs) composite using a two-step method to enhance mechanical properties. In the first step, films (0.2 mm thickness) have been synthesized using a solution mixing method to disperse MWCNTs in the PU matrix. In the second step, thin films of uniformly dispersed MWCNTs in the PU matrix have been compression molded to synthesize PU/MWCNTs composite required for real mechanical applications. The two-step method has the advantages of solution mixing as well as compression molding method. The results of quasi-static nanoindentation tests indicated that in comparison to pure PU, elastic modulus and hardness have been enhanced by 124% and 53% respectively for 10 wt% PU/MWCNTs composite. Fracture resistance of PU/MWCNTs composites, with 7 wt% of MWCNTs, has been enhanced by 52% as compared to pure PU. To understand bulk behavior, nanoindentation results have been cross-verified with compression testing. Results of compressive testing shown that the modulus of composite material has been significantly improved under the influence of the increasing composition of MWCNTs. A noticeable improvement of 52% has been observed in compressive modulus of 10 wt% composite in equivalence to pure PU. The overall improvement in mechanical behavior has been attributed to the uniform dispersion of MWCNTs in the PU matrix by the two-step synthesis method.


2021 ◽  
Vol 3 (6) ◽  
Author(s):  
Seyed Ali Mirsalehi ◽  
Amir Ali Youzbashi ◽  
Amjad Sazgar

AbstractIn this study, epoxy hybrid nanocomposites reinforced by carbon fibers (CFs) were fabricated by a filament winding. To improve out-of-plane (transverse) mechanical properties, 0.5 and 1.0 Wt.% multi-walled carbon nanotubes (MWCNTs) were embedded into epoxy/CF composites. The MWCNTs were well dispersed into the epoxy resin without using any additives. The transverse mechanical properties of epoxy/MWCNT/CF hybrid nanocomposites were evaluated by the tensile test in the vertical direction to the CFs (90º tensile) and flexural tests. The fracture surfaces of composites were studied by scanning electron microscopy (SEM). The SEM observations showed that the bridging of the MWCNTs is one of the mechanisms of transverse mechanical properties enhancement in the epoxy/MWCNT/CF composites. The results of the 90º tensile test proved that the tensile strength and elongation at break of nanocomposite with 1.0 Wt.% MWCNTs improved up to 53% and 50% in comparison with epoxy/CF laminate composite, respectively. Furthermore, the flexural strength, secant modulus, and elongation of epoxy/1.0 Wt.% MWCNT/CF hybrid nanocomposite increased 15%, 7%, and 9% compared to epoxy/CF laminate composite, respectively.


2017 ◽  
Vol 54 (1) ◽  
pp. 41-44 ◽  
Author(s):  
Maria Adina Vulcan ◽  
Celina Damian ◽  
Paul Octavian Stanescu ◽  
Eugeniu Vasile ◽  
Razvan Petre ◽  
...  

This paper deals with the synthesis of polyurea and its use as polymer matrix for nanocomposites reinforced with multi-walled carbon nanotubes (MWCNT). Two types of materials were obtained during this research, the first cathegory uses the polyurea as matrix and the second one uses a mixture between epoxy resin and polyurea. The nanocomposites were characterized by Thermogravimetric Analysis (TGA), Dynamic Mechanical Analysis (DMA), Scanning Electron Microscopy (SEM) and Tensile Tests .The elastomeric features of nanocomposites were highlighted by the results which showed low value of Tg. Also higher thermal stability with ~40oC compared with commercial products (M20) were observed, but lower mechanical properties compared to neat polyurea.


Sign in / Sign up

Export Citation Format

Share Document