Review of Nonlinear Rotor-Bearing Dynamics System

2010 ◽  
Vol 37-38 ◽  
pp. 1130-1137 ◽  
Author(s):  
Xing Cong Wu ◽  
Bin Lin ◽  
Feng Liu ◽  
Xue Song Han

This article summarizes the research status of nonlinear rotor-bearing dynamics system in china and abroad, discusses several major problems of nonlinear rotor-bearing dynamics system and refers to a large number of references. The review includes the following three aspects: modeling for the nonlinear oil film force of rotor-bearing system; general analysis methods of nonlinear rotor-bearing system; and numerical analysis methods of nonlinear rotor-bearing system. Furthermore, the problems in current research are pointed out, and the development tendencies are also described: further research on the model of nonlinear oil film force; The dimension reduction methods of high-dimensional nonlinear rotor-bearing dynamics system and optimal design of multi-degree of freedom coupled system; nonlinear parameter identification, modeling and reconstruction methods of rotating machinery; optimal design of nonlinear dynamics for large rotating machinery; Research on the sensitivity analysis of nonlinear vibration and the stability, nonlinear stability margin and nonlinear stability criteria of rotor-bearing-basis coupled system; analysis and research on nonlinear dynamics of rotor-bearing-seal system.

2012 ◽  
Vol 460 ◽  
pp. 160-164 ◽  
Author(s):  
Song He Zhang ◽  
Yue Gang Luo ◽  
Bin Wu ◽  
Bang Chun Wen

The dynamic model of the three-span rotor-bearing system with rub-impact fault was set up. The influence to nonlinear dynamics behaviors of the rotor-bearing system that induced by rub-impact of one disc, two discs and three discs were numerically studied. The main influence of the rotor system response by the rub-impact faults are in the supercritical rotate speed. There are mutations of amplitudes in the responses of second and third spans in supercritical rotate speed when rub-impact with one disc, and there are chaotic windows in the response of first span, and jumping changes in second and third spans when rub-impact with two or three discs.


2011 ◽  
Vol 18 (1-2) ◽  
pp. 45-52 ◽  
Author(s):  
Jiayang Ying ◽  
Yinghou Jiao ◽  
Zhaobo Chen

The nonlinear dynamics theory is increasingly applied in the dynamics analysis of tilting pad journal bearing-rotor system. However, extensive work on system dynamics done previously neglects the influence caused by the moment of inertia of the pad. In this paper, a comparison is made between the responses of the rotor in the bearings with and without pad inertia effect. Taking the Jeffcott rotor system as an example, the characteristics of bearing-rotor system, such as bifurcation diagram, cycle response, frequency spectrum, phase trajectories, and Poincaré maps, were attained within a certain rotation rate range. The pivotal oil-film force of tilting pad journal bearing was calculated by database method. The results directly demonstrate that considering the influence of the pad moment of inertia, system dynamics characteristics are found more complicated when rotor-bearing system works around natural frequency and system bifurcation is observed forward when rotor-bearing system works on high-speed range.


Author(s):  
Linxiang Sun ◽  
Janusz M. Krodkiewski ◽  
Nong Zhang

Modelling and analysis of a rotor-bearing system with a new type of active oil bearing are presented. The active bearing basically consists of a flexible sleeve and a pressure chamber. The deformation of the sleeve can be controlled by the chamber pressure during the operation, and so can the pressure distribution of the oil film. Finite Element Methods (FEMs) and the Guyan condensation technique were utilised to create mathematical models for both the rotor and the flexible sleeve. The hydrodynamic pressure distribution of the oil film, for the instantaneous positions and velocities of the flexible sleeve and rotor, was approximated by Reynolds equation. The influence of the chamber pressure on the stability of the rotor system was investigated by numerical simulation based on the nonlinear model. The results showed that the stability of the rotor-bearing system can be improved effectively by implementation of the active bearing.


Author(s):  
M Li

The vibrations of parallel geared rotor—bearing system have been intensively discussed; however, little attention has been paid to the dynamic analysis of angled bevel-geared system supported on journals. In the present work, the non-linear dynamics of a bevel-geared rotor system on oil film bearings is studied. First, the dynamic model is developed under some assumptions, such as rigid rotors, short-bearings, small teeth errors, and so forth. Then, the non-linear dynamic behaviours of both the balanced and unbalanced rotor system are analysed, respectively, in which the equilibrium points, limit cycles, their stability, and bifurcations are paid more attention. Numerical results show that in the bevel-geared rotor system under the action of non-linear oil film forces there exists a series of complex non-linear dynamic phenomena of rotor orbits, such as Hopf bifurcation, torus-doubling bifurcation, and jump phenomenon. All these features can help us to understand the dynamic characteristics of bevel-geared rotor—bearing system at design stage and during running period. Finally, some concerned problems during the investigation are also present.


Sign in / Sign up

Export Citation Format

Share Document