Design and Implementation of Logistics Intelligent Management and Control Systems for Steel Enterprises

2013 ◽  
Vol 380-384 ◽  
pp. 716-721 ◽  
Author(s):  
Guan Qi Guo ◽  
Xiang Jun Su ◽  
Xiang Liu

Based on the logistics management and control system of the cold-rolled finished products, this system has realized many features, including three-dimensional positioning of the crane, a variety of real-time data collected through the RFID systems and magnet detection system and wireless data acquisition in the coil storage or out of the library or inverted treasury job process transmitted to the server, coil warehouse operations process optimization and control, forming automatically a plan and target location to crane, Prompting crane operations, real-time monitoring of crane operating, recording crane operating results, tracking and positioning of the treasury coil information, updating treasury stock coil position in real time, inquiry treasury stock and automatic generation of warehouse operations statements by teams or date or month or year, communication with ERP or MES etc. Through seamless connectivity between the crane operating system and warehouse management systems and enterprise information systems, the system can achieve precise synchronization of logistics and information flow.

2020 ◽  
Vol 8 (5) ◽  
pp. 2582-2586

Automation and control systems are necessary throughout oil & gas industries, to production and processing plants, and distribution and retailing of petroleum products. Pipelines are the efficient mode of transportations of fuels for processing plants over long distances. At present Automation is achieved by using PLC’s that are communicated through SCADA. But it is complex and remote operation is not possible. With the introduction of IoT, the pipeline leak detection system is improved through real-time monitoring of the pipelines. Our Proposed system is designed to detect even small leakage that occurs within the pipeline. The implementation of IoT in oil and gas industries prevents accidents and to make quick decisions based on real-time data


2006 ◽  
Vol 16 (4) ◽  
pp. 595-604 ◽  
Author(s):  
S. Shukla ◽  
C.Y. Yu ◽  
J.D. Hardin ◽  
F.H. Jaber

Continuous monitoring of hydraulic/hydrologic data for managing water for horticultural crops has been a challenge due to factors such as data loss, intensive resource requirements, and complicated setup and operation. The use of state-of-the-art wireless spread spectrum communication technology and wireless data acquisition and control (WDAC) systems for agricultural water management is discussed in this paper. The WDAC technology was applied to a research project where lysimeters were used for water quantity and quality studies for vegetables. Two types of WDAC networks, master–slave and peer-to-peer WDAC networks, are discussed. The WDAC system linked the wireless dataloggers to a network to make real-time data available over the Internet. The use of WDAC made it possible to collect real-time data and control the experiment (e.g., frequency of data collection) remotely through the Internet. The WDAC system for the lysimeter study was compared to a commonly used manual system with regard to potential instrument damage, data loss, ease of data collection and analyses, and total cost of monitoring. The advantages of the WDAC include: reduced equipment losses from natural disasters (e.g., lightning), improved equipment maintenance, reduced data loss from faulty equipment, higher project personnel efficiency, and real-time involvement by a dispersed team. The total cost of the WDAC system ($65,750) was about half that of the manual system ($130,380). The WDAC system was found to be an effective tool for agricultural water management projects.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1104
Author(s):  
Shin-Yan Chiou ◽  
Kun-Ju Lin ◽  
Ya-Xin Dong

Positron emission tomography (PET) is one of the commonly used scanning techniques. Medical staff manually calculate the estimated scan time for each PET device. However, the number of PET scanning devices is small, the number of patients is large, and there are many changes including rescanning requirements, which makes it very error-prone, puts pressure on staff, and causes trouble for patients and their families. Although previous studies proposed algorithms for specific inspections, there is currently no research on improving the PET process. This paper proposes a real-time automatic scheduling and control system for PET patients with wearable sensors. The system can automatically schedule, estimate and instantly update the time of various tasks, and automatically allocate beds and announce schedule information in real time. We implemented this system, collected time data of 200 actual patients, and put these data into the implementation program for simulation and comparison. The average time difference between manual and automatic scheduling was 7.32 min, and it could reduce the average examination time of 82% of patients by 6.14 ± 4.61 min. This convinces us the system is correct and can improve time efficiency, while avoiding human error and staff pressure, and avoiding trouble for patients and their families.


Author(s):  
Nicole Gailey ◽  
Noman Rasool

Canada and the United States have vast energy resources, supported by thousands of kilometers (miles) of pipeline infrastructure built and maintained each year. Whether the pipeline runs through remote territory or passing through local city centers, keeping commodities flowing safely is a critical part of day-to-day operation for any pipeline. Real-time leak detection systems have become a critical system that companies require in order to provide safe operations, protection of the environment and compliance with regulations. The function of a leak detection system is the ability to identify and confirm a leak event in a timely and precise manner. Flow measurement devices are a critical input into many leak detection systems and in order to ensure flow measurement accuracy, custody transfer grade liquid ultrasonic meters (as defined in API MPMS chapter 5.8) can be utilized to provide superior accuracy, performance and diagnostics. This paper presents a sample of real-time data collected from a field install base of over 245 custody transfer grade liquid ultrasonic meters currently being utilized in pipeline leak detection applications. The data helps to identify upstream instrumentation anomalies and illustrate the abilities of the utilization of diagnostics within the liquid ultrasonic meters to further improve current leak detection real time transient models (RTTM) and pipeline operational procedures. The paper discusses considerations addressed while evaluating data and understanding the importance of accuracy within the metering equipment utilized. It also elaborates on significant benefits associated with the utilization of the ultrasonic meter’s capabilities and the importance of diagnosing other pipeline issues and uncertainties outside of measurement errors.


Author(s):  
Sachin S Junnarkar ◽  
Jack Fried ◽  
Sudeepti Southekal ◽  
Jean-Francois Pratte ◽  
Paul O'Connor ◽  
...  

2013 ◽  
Vol 773 ◽  
pp. 148-153 ◽  
Author(s):  
Juan Zhou ◽  
Bing Yan Chen ◽  
Meng Ni Zhang ◽  
Ying Ying Tang

Aiming at the management problem of real-time data created while intelligent solar street lamps working, sectional data acquisition and control system based on internet of things is introduced in the paper. Communication protocol with unified form and flexible function is designed in the system, and communication address is composed of sectional address and subsection address. Three-level data structure is built in the polling algorithm to trace real-time state of lamps and to detect malfunction in time, which is suitable for sectional lamps management characteristics. The system reflects necessary statistic data and exception information to remote control centre through GPRS to short interval expend on transmission and procession and save network flow and system energy. The result shows the system brings improved management affection and accords with the idea of energy-saving and environmental protection.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6422
Author(s):  
Grega Morano ◽  
Andrej Hrovat ◽  
Matevž Vučnik ◽  
Janez Puhan ◽  
Gordana Gardašević ◽  
...  

The LOG-a-TEC testbed is a combined outdoor and indoor heterogeneous wireless testbed for experimentation with sensor networks and machine-type communications, which is included within the Fed4FIRE+ federation. It supports continuous deployment principles; however, it is missing an option to monitor and control the experiment in real-time, which is required for experiment execution under comparable conditions. The paper describes the implementation of the experiment control and monitoring system (EC and MS) as the upgrade of the LOG-a-TEC testbed. EC and MS is implemented within existing infrastructure management and built systems as a new service. The EC and MS is accessible as a new tab in sensor management system portal. It supports several commands, including start, stop and restart application, exit the experiment, flash or reset the target device, and displays the real-time status of the experiment application. When nodes apply Contiki-NG as their operating system, the Contiki-NG shell tool is accessible with the help of the newly developed tool, giving further experiment execution control capabilities to the user. By using the ZeroMQ concurrency framework as a message exchange system, information can be asynchronously sent to one or many devices at the same time, providing a real-time data exchange mechanism. The proposed upgrade does not disrupt any continuous deployment functionality and enables remote control and monitoring of the experiment. To evaluate the EC and MS functionality, two experiments were conducted: the first demonstrated the Bluetooth Low Energy (BLE) localization, while the second analysed interference avoidance in the 6TiSCH (IPv6 over the TSCH mode of IEEE 802.15.4e) wireless technology for the industrial Internet of Things (IIoT).


2018 ◽  
Vol 173 ◽  
pp. 02029
Author(s):  
XU Jiahui ◽  
YU Hongyuan ◽  
WANG Gang ◽  
WANG Zi ◽  
BAI Jingjie ◽  
...  

The rapid development of mobile Internet technology and the wide spread of smart terminals have brought opportunities for the transformation of power grid business model. Compared to the non-real-time information, the real-time and running data of dispatch and control domain is easy to be intercepted and cracked. To solve this problem, this paper presents a new approach to mobile application security framework for the power grid control field. It is to realize secondary encryption by using the method of MD5+AES mixed encryption algorithm and combining the time stamp in real-time data transmission process. At the same time it is to prevent cross-border operations and brute force by using Token authentication and Session technology. China EPRI safety test results show that the application of the framework significantly improves the integrity, safety and reliability of real-time data in power grid control.


2011 ◽  
Vol 418-420 ◽  
pp. 1988-1991
Author(s):  
Li Juan Zhao ◽  
Xiu Mei Lv ◽  
Wei Tong

This develops the roadheader vibration characteristics test system according to the structural characteristics and working principle of the cantilevered roadheader. Using the piezoelectric acceleration sensor detects vibration signal, and passing by signal processing and A/D conversion, vibration signals are sent to the PC with wireless transmission mode, vibration signals detected by the LabVIEW is realized real-time data acquisition, time-frequency analysis and digital processing. Based on this system testing results can effectively master roadheader operation state, identify the vibration characteristics, look for vibration source and put forward reasonable damping vibration measure, which provide the basis for roadheader in the best running condition. The development of roadheader vibration detection system uses the method that combines theory and simulation experiment , which realizes the real-time detection of roadheader vibration behavior, rational signal analysis of roadheader vibration and accurate processing of data results, it provides an important method to ensure the reliability of roadheader.


Sign in / Sign up

Export Citation Format

Share Document