Effect of Drive Location on Vibro-Acoustic Characteristics of Submerged Double Cylindrical Shells with Damping Layers

2013 ◽  
Vol 387 ◽  
pp. 59-63
Author(s):  
Chao Zhang ◽  
De Jiang Shang ◽  
Qi Li

Based on the modal superposition method, the analytical model of vibration and sound radiation from submerged double cylindrical shells with damping layers was presented. The shells were described by the classical thin shell theory. The damping layers were described by three-dimensional viscoelastic theory. The annular plates, connecting the double shells, were analyzed with in-plane motion theory. For different drive locations of radial point force on the inner shell, the sound radiated power and the radial quadratic velocity of the model were calculated and analyzed. The results show that making the drive location near the annular plate helps to reduce the sound radiated power and radial quadratic velocity of model, and making the drive location far from the middle of model also helps to reduce the sound radiated power. The drive applied on the location of annular plate causes high similarity of vibrations from inner shell and outer shell.

2013 ◽  
Vol 779-780 ◽  
pp. 602-606 ◽  
Author(s):  
Chao Zhang ◽  
De Jiang Shang ◽  
Qi Li

A prediction method for the sound radiated power from submerged double cylindrical shells based on measuring vibration of inner shell is presented. The prediction model of submerged double cylindrical shells is established by using modal superposition method. Applied the ratio of the measuring value and theoretical value of the acceleration in one point or mean square velocity of inner shell, and combined with the theoretical value of the sound radiated power, the predicted value of the sound radiated power is derived. The corresponding experiment is carried out in lake. And then the measuring power curve is compared with the predicted power curve based on this method. The result shows that they have good agreement and the average prediction error is less than 2dB.


Author(s):  
Satoru Yamaguchi ◽  
Kazuo Ishida ◽  
Takashi Ibata ◽  
Kazuma Kawano ◽  
Kazuyoshi Sekine ◽  
...  

In 1978, Off-Miyagi Prefecture Earthquake in Japan caused damage to large oil storage tanks. Their annular plates had been greatly reduced in thickness due to local corrosion, and they were broken by uplifting due to the earthquake. In order to examine the stress tendency of annular plates with local metal loss during uplift by earthquakes, nonlinear static uplift analyses by three-dimensional shell FEM were carried out on a 110,000kl oil tank. The sizes of locally reduced parts, such as the circumferential and radial dimensions, were taken as the analytical parameters. Many useful results were obtained regarding the relationship between the range of local metal loss and the stress in annular plate. The “stress increase ratio” is defined in this study as the ratio of radial surface stress in an annular plate with metal loss to that without metal loss. The following results were obtained. As the radial width of metal loss part decreases, the annular plate radial stress increases. The stress increase ratio is 1.47 when the thickness of radial metal loss part of radial width 23mm is reduced to 18.4mm from an original thickness of 21mm. For a circumferential length of metal loss part of less than 2.1m that is calculated by multiplying the radius of tank with the tank central angle of three degrees, the stress increases proportionally to the length of metal loss part. On the other hand, when the length is more than 2.1m, the maximum stress has a tendency to saturate.


2003 ◽  
Vol 70 (2) ◽  
pp. 180-190 ◽  
Author(s):  
E. Pan

In this paper, three-dimensional Green’s functions in anisotropic elastic bimaterials with imperfect interface conditions are derived based on the extended Stroh formalism and the Mindlin’s superposition method. Four different interface models are considered: perfect-bond, smooth-bond, dislocation-like, and force-like. While the first one is for a perfect interface, other three models are for imperfect ones. By introducing certain modified eigenmatrices, it is shown that the bimaterial Green’s functions for the three imperfect interface conditions have mathematically similar concise expressions as those for the perfect-bond interface. That is, the physical-domain bimaterial Green’s functions can be obtained as a sum of a homogeneous full-space Green’s function in an explicit form and a complementary part in terms of simple line-integrals over [0,π] suitable for standard numerical integration. Furthermore, the corresponding two-dimensional bimaterial Green’s functions have been also derived analytically for the three imperfect interface conditions. Based on the bimaterial Green’s functions, the effects of different interface conditions on the displacement and stress fields are discussed. It is shown that only the complementary part of the solution contributes to the difference of the displacement and stress fields due to different interface conditions. Numerical examples are given for the Green’s functions in the bimaterials made of two anisotropic half-spaces. It is observed that different interface conditions can produce substantially different results for some Green’s stress components in the vicinity of the interface, which should be of great interest to the design of interface. Finally, we remark that these bimaterial Green’s functions can be implemented into the boundary integral formulation for the analysis of layered structures where imperfect bond may exist.


Author(s):  
Jung-Ge Tseng ◽  
Jonathan Wickert

Abstract Vibration of an array of stacked annular plates, in which adjacent plates couple weakly through an acoustic layer, is investigated through experimental and theoretical methods. Such acoustic coupling manifests itself through split natural frequencies, beating in the time responses of adjacent or separated plates, and system-level modes in which plates in the array vibrate in- or out-of-phase at closely-spaced frequencies. Laboratory measurements, including a technique in which the frequency response function of all in-phase modes but no out-of-phase modes, or visa versa, is measured, demonstrate the contribution of coupling to the natural frequency spectrum, and identify the combinations of design parameters for which it is important. For the lower modes of primary interest here, the natural frequencies of the out-of-phase system modes decrease as the air layer becomes thinner, while those of the in-phase mode remain sensibly constant at the in vacuo values. A vibration model comprising N classical thin plates that couple through the three-dimensional acoustic fields established in the annular cavities between plates is developed, and its results are compared with measurements of the natural frequencies and mode shapes.


Author(s):  
Li Li ◽  
Ben S. Zhong ◽  
Zi Y. Geng ◽  
Wei Sun

Structural shape reconstruction is a critical issue for real-time structural health monitoring in the fields of engineering application. This paper shows how to implement structural shape reconstruction using a small number of strain data measured by fiber Bragg grating (FBG) sensors. First, the basic theory of structural shape reconstruction is introduced using modal superposition method. A transformation is derived from the measured discrete strain data to global displacement field through modal coordinate, which is the same for strain mode shape superposition and displacement mode shape superposition. Then, optimization of the sensor layout is investigated to achieve the effective reconstruction effect. Finally, structural shape reconstruction algorithm using modal superposition method is applied in experiments. The experiment results show that the reconstructed displacements match well with those measured by a laser displacement sensor and the proposed approach is a promising method for structural shape reconstruction.


1994 ◽  
Vol 47 (10) ◽  
pp. 501-516 ◽  
Author(s):  
Kostas P. Soldatos

There is an increasing usefulness of exact three-dimensional analyses of elastic cylinders and cylindrical shells in composite materials applications. Such analyses are considered as benchmarks for the range of applicability of corresponding studies based on two-dimensional and/or finite element modeling. Moreover, they provide valuable, accurate information in cases that corresponding predictions based on that later kind of approximate modeling is not satisfactory. Due to the complicated form of the governing equations of elasticity, such three-dimensional analyses are comparatively rare in the literature. There is therefore a need for further developments in that area. A survey of the literature dealing with three-dimensional dynamic analyses of cylinders and open cylindrical panels will serve towards such developments. This paper presents such a survey within the framework of linear elasticity.


1983 ◽  
Vol 105 (2) ◽  
pp. 171-178 ◽  
Author(s):  
V. N. Shah ◽  
C. B. Gilmore

A modal superposition method for the dynamic analysis of a structure with Coulomb friction is presented. The finite element method is used to derive the equations of motion, and the nonlinearities due to friction are represented by pseudo-force vector. A structure standing freely on the ground may slide during a seismic event. The relative displacement response may be divided into two parts: elastic deformation and rigid body motion. The presence of rigid body motion necessitates the inclusion of the higher modes in the transient analysis. Three single degree-of-freedom problems are solved to verify this method. In a fourth problem, the dynamic response of a platform standing freely on the ground is analyzed during a seismic event.


Sign in / Sign up

Export Citation Format

Share Document