UV-Visible Emission Spectroscopy of the Combustion Process in a Common Rail Cl Engine Fulled with N-Butanol - Diesel Blends

2013 ◽  
Vol 390 ◽  
pp. 286-290 ◽  
Author(s):  
Cinzia Tornatore ◽  
Luca Marchitto ◽  
Simona Silvia Merola ◽  
Gerardo Valentino

This paper is focused on the study of the effects of the injection strategy and fuel blends on spray combustion and soot formation in compression ignition engines. UV-visible natural emission spectroscopy was applied in the combustion chamber of a single cylinder high swirl compression ignition engine equipped with a common rail multi-jet injection system. The engine was fuelled with low-sulphur neat diesel and blended with 20 and 40% by volume of n-butanol. For all the fuels, the evolution of radical species, such like OH and soot was followed during the spray combustion processes examining different pilot-main dwell timings. Optical data were correlated to engine parameters and exhaust emissions.

Author(s):  
Simona S. Merola ◽  
Bianca M. Vaglieco ◽  
Ezio Mancaruso

Spectroscopic measurements and 2D digital imaging were used in single cylinder, four-stroke DI diesel engine, optically accessible. It was equipped with a four-valve head and fully flexible electronic controlled ‘Common Rail’ injection system. Three fuel injection strategies, descriptive of the CR diesel engine, were considered. They consisted of a main, a pilot and main and finally pilot, main and post injections. Fuel spray and visible flame propagation were evaluated by digital imaging at high temporal resolution. Autoignition and combustion processes were analysed by broadband ultraviolet-visible flame emission spectroscopy. Radical species such as OH and C2 allowed to characterise the ignition process and pollutant formation. Soot temperature and mass concentration were evaluated by two-colour pyrometry. The presence of C2 and OH radicals strongly characterised CR diesel combustion process during soot formation and evolution. In particular, the high presence of OH concentration for the whole process, from the autoignition to the soot formation and successive phases, contributed to lower the soot levels.


2018 ◽  
Vol 184 ◽  
pp. 01013
Author(s):  
Corneliu Cofaru ◽  
Mihaela Virginia Popescu

The paper presents the research designed to develop a HCCI (Homogenous Charge Compression Ignition) engine starting from a spark ignition engine platform. The chosen test engine was a single cylinder, four strokes provided with a carburettor. The results of experimental research data obtained on this version were used as a baseline for the next phase of the research. In order to obtain the HCCI configuration, the engine was modified, as follows: the compression ratio was increased from 9.7 to 11.5 to ensure that the air – fuel mixture auto-ignite and to improve the engine efficiency; the carburettor was replaced by a direct fuel injection system in order to control precisely the fuel mass per cycle taking into account the measured intake air-mass; the valves shape were modified to provide a safety engine operation by ensuring the provision of sufficient clearance beetween the valve and the piston; the exchange gas system was changed from fixed timing to variable valve timing to have the possibilities of modification of quantities of trapped burnt gases. The cylinder processes were simulated on virtual model. The experimental research works were focused on determining the parameters which control the combustion timing of HCCI engine to obtain the best energetic and ecologic parameters.


2018 ◽  
Vol 10 (0) ◽  
pp. 1-9
Author(s):  
Romualdas Juknelevičius

The article presents the test results of the single cylinder CI engine with common rail injection system operating on biofuel – Rapeseed Methyl Ester with addition supply of hydrogen. The purpose of this investigation was to examine the influence of the hydrogen addition to the biofuel on combustion phases, engine performance, efficiency, and exhaust emissions. HES was changed within the range from 0 to 44%. Hydrogen was injected into the intake manifold, where it created homogeneous mixture with air. Tests were performed at both fixed and optimal injection timings at low, medium and nominal engine load. After analysis of the engine bench tests and simulation with AVL BOOST software, it was observed that lean hydrogen – RME mixture does not support the flame propagation and efficient combustion. While at the rich fuel mixture and with increasing hydrogen fraction, the combustion intensity concentrate at the beginning of the combustion process and shortened the ignition delay phase. AVL BOOST simulation performed within the wide range of HES (16–80%) revealed that combustion intensity moves to the beginning of combustion with increase of HES. Decrease of CO, CO2 and smoke opacity was observed with increase of hydrogen amounts to the engine. However, increase of the NO concentration in the engine exhaust gases was observed. Santrauka Straipsnyje pateikti tyrimo rezultatai, gauti atlikus bandymą vieno cilindro slėginio uždegimo variklyje su biodegalais – rapsų metilesterį (RME) ir vandenilį. Biodegalai įpurškiami akumuliatorine įpurškimo sistema „Common rail“. Šio tyrimo tikslas – ištirti, kaip vandenilis veikia biodegalų degimą, variklio veikimą, jo efektyvumą ir deginių susidarymą. Vandenilio energinė dalis degimo mišinyje buvo keičiama nuo 0 iki 44 %. Vandenilis buvo tiekiamas įsiurbimo fazės metu įsiurbimo kanalu į degimo kamerą, kurioje jis, susimaišęs su oru, sudaro homogeninį mišinį. Bandymai buvo atliekami nekeičiant įpurškimo kampo, nustačius optimalų įpurškimo kampą esant žemai, vidutinei ir nominaliai variklio apkrovai. Išnagrinėjus variklio bandymų rezultatus ir sumodeliavu AVL BOOST programa, buvo pastebėta, kad, esant liesam vandenilio ir RME mišiniui, liepsnos plitimas yra lėtas, mišinys dega neveiksmingai. Tačiau riebus degalų mišinys ir padidinta vandenilio energijos dalis užtikrina degimo intensyvumą degimo proceso pradžioje ir sutrumpina uždegimo gaišties trukmę. AVL BOOST modeliavimas, atliktas plačiu vandenilio energijos dalies diapazonu (16–80 %), patvirtino teiginį, kad degimas tampa intensyvesnis degimo pradžioje dėl padidinto vandenilio kiekio. Didinant vandenilio kiekį, buvo pastebėta, kad išmetamosiose dujose sumažėjo CO, CO2 ir kietųjų dalelių, tačiau padidėjo NO koncentracija.


Author(s):  
Marcello Canova ◽  
Shawn Midlam-Mohler ◽  
Yann Guezennec ◽  
Giorgio Rizzoni ◽  
Luca Garzarella ◽  
...  

Homogeneous Charge Compression Ignition (HCCI) is a combustion process based on a lean, homogeneous, premixed charge reacting and burning uniformly throughout the mixture volume. This principle leads to a consistent decrease in NOx and PM emissions, while the combustion efficiency remains comparable to traditional Compression Ignition Direct Injection (CIDI) engines at low and mid-load operations. However, understanding and controlling the combustion process is still extremely difficult, as well as finding a proper method for the fuel introduction. A viable method consists of premixing the charge by applying a proper fuel atomization device in the intake port, thus decoupling the HCCI mixture formation from the traditional in-cylinder injection. This avoids the traditional drawbacks associated to external Diesel mixture preparation, such as high intake heating, low compression ratio, wall wetting, and soot formation. The system, previously developed and tested on a single-cylinder engine, has been successfully applied to multi-cylinder Diesel engine for automotive applications. Building on previous modeling and experimental work, the paper reports a detailed experimental analysis of HCCI combustion with external mixture formation. In the considered testing setup, the fuel atomizer has been applied to a four-cylinder turbo-charged Common Rail Diesel engine equipped with a cooled EGR system. In order to extend the knowledge on the process and to provide a large base of data for the identification of Control-Oriented Models, Diesel-fueled HCCI combustion has been characterized over different values of loads, EGR dilution and boost pressures. The data collected were then used for the validation of a HCCI Diesel engine model that was previously built for steady state and transient simulation and for control purposes. The experimental results obtained, especially considering the emission levels and efficiency, suggest that the technology developed for external mixture formation is a feasible upgrade for automotive Diesel engines without introducing additional design efforts or constraints on the DI combustion and injection system.


2015 ◽  
Vol 19 (6) ◽  
pp. 1943-1957
Author(s):  
Simona Merola ◽  
Luca Marchitto ◽  
Cinzia Tornatore ◽  
Gerardo Valentino

Combustion process was studied from the injection until the late combustion phase in an high swirl optically accessible combustion bowl connected to a single cylinder 2-stroke high pressure common rail compression ignition engine. Commercial diesel and blends of diesel and n-butanol (20%: BU20 and 40%: BU40) were used for the experiments. A pilot plus main injection strategy was investigated fixing the injection pressure and fuel mass injected per stroke. Two main injection timings and different pilot-main dwell times were explored achieving for any strategy a mixing controlled combustion. Advancing the main injection start, an increase in net engine working cycle (>40%) together with a strong smoke number decrease (>80%) and NOx concentration increase (@50%) were measured for all pilot injection timings. Compared to diesel fuel, butanol induced a decrease in soot emission and an increase in net engine working area when butanol ratio increased in the blend. A noticeable increase in NOx was detected at the exhaust for BU40 with a slight effect of the dwell-time. Spectroscopic investigations confirmed the delayed auto-ignition (~60 ms) of the pilot injection for BU40 compared to diesel. The spectral features for the different fuels were comparable at the start of combustion process, but they evolved in different ways. Broadband signal caused by soot emission, was lower for BU40 than diesel. Different balance of the bands at 309 and 282 nm, due to different OH transitions, were detected between the two fuels. The ratio of these intensities was used to follow flame temperature evolution.


Sign in / Sign up

Export Citation Format

Share Document