Simulation Analysis Reinforced Concrete U-Shaped Aqueduct

2013 ◽  
Vol 394 ◽  
pp. 345-348
Author(s):  
Min Tan

This paper adopts finite element method to carry out simulation analysis for Enzitan reinforced concrete U-shaped aqueduct. Deducing variation law of the aqueducts stress and displacement in construction process and operational process, researching the rationality of aqueduct structure design scheme. Analysis results show that, Enzitan reinforced concrete aqueduct structure is reasonable, force of aqueduct structure is explicit, it meets the requirements for design.

2013 ◽  
Vol 804 ◽  
pp. 325-328
Author(s):  
Xiang Zan Xie

This paper adopts finite element method to carry out simulation analysis for Bachimen wire mesh concrete U-shaped aqueduct. Deducing variation law of the aqueducts stress and displacement in construction process and operational process, researching the rationality of aqueduct structure design scheme. Analysis results show that, Bachimen wire mesh concrete aqueduct structure is reasonable, force of aqueduct structure is explicit, it meets the requirements for design. The research results provide a certain reference for design of wire mesh concrete U-shaped aqueduct structure.


2013 ◽  
Vol 394 ◽  
pp. 332-335
Author(s):  
Min Tan

Through analyzing dry masonry overflow dam structures mechanical characteristics in construction process and operational process, this paper adopts finite element method to carry out simulation analysis for dry masonry overflow dam of Daxilong reservoir. Deducing distribution law of the dams stress and displacement in construction process and operational process. Analysis results show that, dry masonry overflow dam of Daxilong reservoir construction is reasonable, it meets the requirements for design.


2014 ◽  
Vol 488-489 ◽  
pp. 569-572
Author(s):  
Ke Ding Liu

This paper adopt universal finite element calculation software to carry out simulation analysis for Jinliang river of Mianyou canal trench-buried inverted siphon. Deducing variation law of the inverted siphons stress and displacement in construction process and operating process. The calculation results further shown design schemes rationality and safety. Which provide reliable reference of design and construction for the trench-buried inverted siphon.


Author(s):  
V. P. Agapov ◽  
K. R. Aydemirov

Objectives. The finite element method for cracked reinforced concrete slabs analysis after they were reinforced with composite fabrics in order to determine the residual safety factor is considered. Method. The method is based on the use of algorithms for calculating of structures with the account of the geometrical and physical nonlinearities, implemented in the PRINS program. These algorithms assume the use of the same calculation scheme in the process of the problem solving. However, the specifics of the assigned problem is that the design sсheme of the structure before the appearance of defects in it and after its amplification with the help of composite materials should change. Result. Taking into account this circumstance, the algorithms of nonlinear calculation of structures under the PRINS program were supplemented with an option that allows changing the parameters of the design scheme in the process of through calculation. To study the bearing capacity of reinforced concrete slabs, multilayer finite elements are used, for each of which a specific package of materials is specified. Modernization of the design scheme in this case comes down to replacing one package of materials with another. An example of calculation of a slab with a crack reinforced with composite fabric is given. Conclusion. It is shown that the use of a tunable design scheme can significantly improve the accuracy of calculations. In this case, the final result depends on what stage of the formation of defects in the slab its strengthening is realized. The special  multilayered finite elements of a quadrangular shape are used in calculations. The elements consist of four simple triangles, for which most of the matrix characteristics are calculated in a closed form. This is especially important when carrying out nonlinear calculations that require repeated computations of these characteristics. 


2010 ◽  
Vol 54 (01) ◽  
pp. 34-40
Author(s):  
Zhou Bo ◽  
Liu Yujun ◽  
Ji Zhuoshang

Lifting padeyes are widely used in the construction of offshore structures and ships. It has been shown that the traditional check method cannot reflect the realistic value and distribution of actual stress on the padeyes. A more accurate method for the padeye stress calculation is essential and important for promoting the safety of the padeyes. In this paper, a new check formula is proposed based on the analysis of deformation and external loads distribution on lifting padeyes. The results of finite element method and the solutions of traditional check formula and new check formula are compared. It is shown that, by applying the stress check formula derived in the paper, the value and the location of the dangerous stresses occurred can be evaluated easily and exactly. The safe reliability of structure design can be improved significantly.


2020 ◽  
Author(s):  
Gabriel Dos Santos ◽  
Flávio Goulart dos Reis Martins ◽  
Bárbara Maria Oliveira Santos ◽  
Daniel Henrique Nogueira Dias ◽  
Guilherme Gonçalves Sotelo ◽  
...  

Nowadays, the complexity of electrical power systems is increasing. Consequently, the occurrence and the amplitude of the fault current are rising. This fault currents harm the substations’ electrical equipment. Besides, the growth in the fault current level is forcing the change of the circuit breakers to others with a higher interruption capability. A proposal to solve this problem is the fault current limiter (FCL). This equipment has low impedance in the normal operation and high impedance in a short circuit moment. Superconductors are an advantageous choice of material in this case, because of their properties. In order to simulate this equipment, the 2-D Finite Element Method (FEM) has been used. In this paper, a novel FEM simulation analysis of the saturated core Superconductor Fault Current Limiter (SFCL) is proposed using the A-V-H formulation. The current distribution in the superconducting coil is observed. The results are compared to the limited fault current measurements and simulations available in the literature.


2021 ◽  
Vol 3 (1) ◽  
pp. 95-105
Author(s):  
T. Makovkina ◽  
◽  
M. Surianinov ◽  
O. Chuchmai ◽  
◽  
...  

Analytical, experimental and numerical results of determination of natural frequencies and forms of oscillations of reinforced concrete and fiber concrete beams are given. Modern analytical, numerical and experimental methods of studying the dynamics of reinforced concrete and fiber concrete beams are analyzed. The problem of determining the natural frequencies and forms of oscillations of reinforced concrete and fiber concrete beams at the initial modulus of elasticity and taking into account the nonlinear diagram of deformation of materials is solved analytically. Computer modeling of the considered constructions in four software complexes is done and the technique of their modal analysis on the basis of the finite element method is developed. Experimental researches of free oscillations of the considered designs and the comparative analysis of all received results are carried out. It is established that all involved complexes determine the imaginary frequency and imaginary form of oscillations. The frequency spectrum calculated by the finite element method is approximately 4% lower than that calculated analytically; the results of the calculation in SOFiSTiK differ by 2% from the results obtained in the PC LIRA; the discrepancy with the experimental data reaches 20%, and all frequencies calculated experimentally, greater than the frequencies calculated analytically or by the finite element method. This rather significant discrepancy is explained, according to the authors, by the incorrectness of the used dynamic model of the reinforced beam. The classical dynamics of structures is known to be based on the theory of linear differential equations, and the oscillations of structures are considered in relation to the unstressed initial state. It is obvious that in the study of free and forced oscillations of reinforced concrete building structures such an approach is unsuitable because they are physically nonlinear systems. The concept of determining the nonlinear terms of these equations is practically not studied. Numerous experimental researches and computer modeling for the purpose of qualitative and quantitative detection of all factors influencing a spectrum of natural frequencies of fluctuations are necessary here.


Sign in / Sign up

Export Citation Format

Share Document