Estimation of Air Pollutant Emissions in “Turbo” and in Conventional Roundabouts

2013 ◽  
Vol 394 ◽  
pp. 597-604 ◽  
Author(s):  
Ferdinando Corriere ◽  
Gianfranco Rizzo ◽  
Marco Guerrieri

The road pollutant emissions, above all in urban context, are correlated to many infrastructural parameters and to traffic intensity and typology. The research work on road junction geometry, carried out in European research centres, has recently allowed to design new road intersection types which are of undoubted interest, especially in terms of traffic functionality and safety, like the turbo roundabouts (in which right-turn manoeuvres do not conflict with the circulating flow). The main objective of this paper is to propose a model for the estimation the performances and the pollutant emissions into turbo roundabouts. A comparative analysis between conventional roundabout and turbo roundabout has been carried out in terms of CO, CO2, CH4, NO, PM2,5 and PM10 vehicular emissions, evaluated by mean of COPERT Software which is developed as a European tool for the calculation of emissions from the road transport sector.

2013 ◽  
Vol 59 (2) ◽  
pp. 229-246 ◽  
Author(s):  
F. Corriere ◽  
M. Guerrieri ◽  
D. Ticali ◽  
A. Messineo

Abstract The road pollutant emissions, above all in urban context, are correlated to many infrastructural parameters and to traffic intensity and typology. The research work on road junction geometry, carried out in European research centres, has recently allowed to design new road intersection types which are of undoubted interest, especially in terms of traffic functionality and safety, like the flower roundabouts (in which right-turn manoeuvres do not conflict with the circulating flow). The main objective of this paper is to propose a model for the estimation the capacity, delay, levels of service and the pollutant emissions into flower roundabouts. A comparative analysis between conventional roundabout and flower roundabout has been carried out in terms of CO, CO2, CH4, NO, PM2,5 and PM10 vehicular emissions, evaluated by mean of COPERT Software which is developed as a European tool for the calculation of emissions from the road transport sector.


2017 ◽  
Vol 19 (4) ◽  
pp. 614-640

The problem of reducing CO2 emissions from transport, a major contributor to the greenhouse effect, has become a growing concern for the scientific community and various international committees monitoring climate change. Energy savings in the transport sector are a key factor towards rational management of oil reserves, while new trends in the automotive market have already been established, supported by research on efficient and environmentally-friendly technologies and alternative fuels to face fossil fuel dependency. The road transport sector is an important part for most developed economies but also a major source of pollutant emissions. In this framework, this paper focuses on transport emissions along the main road axis in Greece, connecting the country’s two largest urban areas, during the years 2008-2014, a period of prolonged recession. Based on traffic data collected at the toll stations along the highway, greenhouse gas and pollutant emissions were calculated using the COPERT4 emission estimation tool. According to the results, a sharp fall in emissions is observed largely due to traffic volume reductions, but also due to a prevailing trend for larger displacement vehicles and technologically improved vehicles with better environmental standards.


Atmosphere ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 695
Author(s):  
Marek Bogacki ◽  
Robert Oleniacz ◽  
Mateusz Rzeszutek ◽  
Paulina Bździuch ◽  
Adriana Szulecka ◽  
...  

One of the elements of strategy aimed at minimizing the impact of road transport on air quality is the introduction of its reorganization resulting in decreased pollutant emissions to the air. The aim of the study was to determine the optimal strategy of corrective actions in terms of the air pollutant emissions from road transport. The study presents the assessment results of the emission reduction degree of selected pollutants (PM10, PM2.5, and NOx) as well as the impact evaluation of this reduction on their concentrations in the air for adopted scenarios of the road management changes for one of the street canyons in Krakow (Southern Poland). Three scenarios under consideration of the city authorities were assessed: narrowing the cross-section of the street by eliminating one lane in both directions, limiting the maximum speed from 70 km/h to 50 km/h, and allowing only passenger and light commercial vehicles on the streets that meet the Euro 4 standard or higher. The best effects were obtained for the variant assuming banning of vehicles failing to meet the specified Euro standard. It would result in a decrease of the yearly averaged PM10 and PM2.5 concentrations by about 8–9% and for NOx by almost 30%.


2013 ◽  
Vol 459 ◽  
pp. 563-568 ◽  
Author(s):  
Marco Guerrieri ◽  
Ferdinando Corriere ◽  
Giuseppe Parla ◽  
Dario Di Vincenzo ◽  
Antonio Messineo

Road pollutant emissions are correlated mainly to infrastructural capacity and to traffic intensity and typology. With the aim to improve road intersections performances in the last years was designed many new geometric layouts, like turbo roundabouts and flower roundabouts. The main objective of this paper is carried out a comparative analysis between conventional and innovative roundabouts in terms of CO, CO2, NO and PM2,5 vehicular emissions, evaluated by means of COPERT Software which is developed as a European tool for the calculation of emissions from the road transport sector.


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3634
Author(s):  
Daniele Lerede ◽  
Chiara Bustreo ◽  
Francesco Gracceva ◽  
Yolanda Lechón ◽  
Laura Savoldi

The European Roadmap towards the production of electricity from nuclear fusion foresees the potential availability of nuclear fusion power plants (NFPPs) in the second half of this century. The possible penetration of that technology, typically addressed by using the global energy system EUROFusion TIMES Model (ETM), will depend, among other aspects, on its costs compared to those of the other available technologies for electricity production, and on the future electricity demand. This paper focuses on the ongoing electrification process of the transport sector, with special attention devoted to road transport. A survey on the present and forthcoming technologies, as foreseen by several manufacturers and other models, and an international vehicle database are taken into account to develop the new road transport module, then implemented and harmonized inside ETM. Following three different storylines, the computed results are presented in terms of the evolution of the road transport demand in the next decades, fleet composition and CO 2 emissions. The ETM results are in line with many other studies. On one hand, they highlight, for the European road transport energy consumption pattern, the need for dramatic changes in the transport market, if the most ambitious environmental goals are to be pursued. On the other hand, the results also show that NFPP adoption on a commercial scale could be justified within the current projection of the investment costs, if the deep penetration of electricity in the road transport sector also occurs.


Author(s):  
Sehee Han ◽  
Seunguk Na ◽  
Nam-Gi Lim

Since the life cycle of a building spans more than 50 years, studies of the environmental impacts in the construction industry have focused on reducing the energy consumption and greenhouse gas emissions during the operation and maintenance phase. The products of the construction industry are assembled using various building materials manufactured outside of the construction site. Consequently, it is essential that the manufactured building materials be transported to the construction site using various types of transportation methods. However, there is a lack of studies that assess the pollutant emissions of road transport while executing a construction project. The purpose of this study is to investigate the changes in the road pollutant emissions when the old diesel vehicles for transporting building materials are replaced according to enhanced pollutant emission regulations. In this study, we found that approximately 89, 64, 77, and 64% of NOx, VOC, PM, and CO, respectively, were emitted during transportation of building materials as a proportion of the emissions during the construction of the structure. The analyzed results also show that about 10, 35, 23, and 35% of NOx, VOC, PM, and CO, respectively, were generated from material transportation as a proportion of the emissions from finishing the work. It is expected that a reduction in pollutant emissions from transporting building materials of up to approximately 64, 39, 49, and 27% of NOx, VOC, PM, and CO, respectively, can be achieved when vehicles registered before 2003 are replaced with ones that adhere to the tightened regulations.


Sign in / Sign up

Export Citation Format

Share Document