Fast Synthesis of Ag3PO4 Cube Microcrystals and its High Visible-Light-Driven Photocatalytic Activities

2013 ◽  
Vol 401-403 ◽  
pp. 787-791
Author(s):  
Li Guo ◽  
Lin Lin Yue ◽  
Dan Jun Wang ◽  
Feng Fu

Ag3PO4 photocatalyst was successfully synthesized via a aqueous precipitation process using AgNO3, NH3·H2O and NH4H2PO4 as raw materials, and characterized by X-ray diffraction (XRD),solid-UV-Vis and FE-SEM techniques. Photodegradation of Methylene blue solution,Rhodamine B,was studied with Ag3PO4 under experiment light recourse of metal halide lamp . The XRD result showed that the sample Ag3PO4 synthesized in a high purity belongs to tetragonal. And the sample has a strong absorption between 200 nm and 400 nm analysized by UV-Vis. The photodegradation experiment showed that Methylene blue solutionRhodamine B was more easily photodegradated with Ag3PO4 and light recourse was metal halide lamp.

2018 ◽  
Vol 281 ◽  
pp. 813-818 ◽  
Author(s):  
Xin Liu ◽  
Jia Ke Li

Bismuth vanadate (BiVO4 ) powders were synthesized using Bi (NO3)3.5H2O and NH4VO3 as raw materials, NaOH and HNO3 for pH adjustment. The samples were characterized by X-ray diffraction ( XRD ), scanning electron microscopy (SEM ) and UV-vis diffuse reflectance spectra techniques. The results show that the pH of precursor solution has great effect on the composition and morphology of products. Synthetic product was BiVO4 with two kinds of crystal shape ( monoclinic and tetragonal ) with pH of 3; synthetic product was pure monoclinic phase BiVO4 when the pH is between 5-9. Whereas, V2O5 and Bi2O3 appeared when the pH was 11; synthetic product was a mixture of V2O5 and Bi2O3 with pH of 13, and BiVO4 don’t exist. The photocatalytic activity was evaluated by the degradation of methylene blue solution. It is shown that the synthetic sample has the best photocatalytic ability with pH of 5. The degradation of methylene blue reaches 84.7% when irradiated for 240 min by high pressure mercury lamp, and the sample synthesized at 13 for pH has strong adsorption capacity and poor photocatalytic ability.


2013 ◽  
Vol 853 ◽  
pp. 73-78
Author(s):  
Yan Xi Deng ◽  
Chuan Chuan Liu ◽  
Guang Yang

Diatomite supported Cu-doped TiO2 photocatalysts were synthesized by sol-gel method and characterized by X-ray diffraction (XRD), SEM and UV-vis diffuses reflectance of spectroscopy (DRS). The photocatalytic activity was evaluated by photocatalytic degradation of methylene blue solution under visible light irradiation. The results show that TiO2/diatomite ratio had a great influene on their photocatalytic activities. All prepared Cu-TiO2/diatomite had a better photocatalytic activities in comparison with Cu-TiO2 and the Cu-TiO2(30)/diatomite had higher photocatalytic activity than others. The photocatalytic degradation of methylene blue is due to the breaking of the chormophoric group, rather than the simple decoloration.


2012 ◽  
Vol 486 ◽  
pp. 55-59 ◽  
Author(s):  
He Sun ◽  
Pei Song Tang

The FeS2 was synthesized using S powder, FeCl24H2O and PVP as main raw materials by solvothermal method. The FeS2 product was characterized by XRD, SEM, DRS and TG-DTA. The results show that FeS2 is the cube structure, particle size about 90 nm, band gap energy Eg=1.9 eV. Consequently, FeS2 nanoparticles show high visible-light photocatalytic activity for decomposition of methylene blue, which degradation rate of 10mg/L methylene blue solution can reach to 95% for 90 min under visible-light irradiation.


2014 ◽  
Vol 608 ◽  
pp. 224-229 ◽  
Author(s):  
Potjanaporn Chaengchawi ◽  
Karn Serivalsatit ◽  
Pornapa Sujaridworakun

A visible-light responsive CdS/ZnO nanocomposite photocatalyst was successfully synthesized by precipitation of CdS nanoparticles, using Cd (NO3)2 and Na2S as starting materials, on ZnO nanoparticles and then calcined at 400°C for 2 hours. The effects of the mole ratio of CdS and ZnO in the composites on their phase, morphology, and surface area were investigated by X-ray Diffraction (XRD), scanning electron microscope (SEM), Brunauer Emmett Teller method (BET), respectively. The photocatalytic degradation of methylene blue solution in the presence of composite products under visible-light irradiation was investigated. The results showed that the mole ratio of CdS and ZnO played a significant role on photocatalytic performance. The highest photocatalytic activity was obtained from the CdS/ZnO nanocomposite with mole ratio of 1:4, which is higher than that of pure CdS and pure ZnO.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Xianlu Cui ◽  
Yaogang Li ◽  
Qinghong Zhang ◽  
Hongzhi Wang

Flaky layered double hydroxide (FLDH) was prepared by the reconstruction of its oxide in alkali solution. The composites with FLDH/Ag3PO4mass ratios at 1.6 : 1 and 3 : 1 were fabricated by the coprecipitation method. The powders were characterized by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscope, and UV-vis diffuse reflectance spectroscopy. The results indicated that the well-distributed Ag3PO4in a fine crystallite size was formed on the surface of FLDH. The photocatalytic activities of the Ag3PO4immobilized on FLDH were significantly enhanced for the degradation of acid red G under visible light irradiation compared to bare Ag3PO4. The composite with the FLDH/Ag3PO4mass ratio of 3 : 1 showed a higher photocatalytic efficiency.


2013 ◽  
Vol 668 ◽  
pp. 13-16
Author(s):  
Qing Shan Li ◽  
Biao Zhan ◽  
Wei Hong ◽  
Guang Zhong Xing

Opal as a carrier, tetrabutyl titanate as a titanium source, TiO2 loaded on opal was prepared by sol-gel technique. The photocatalysts were characterized by XRD, TEM and UV-VIS absorption spectrum. Their photocatalytic activities were examined by the photocatalytic decolorization of methylene blue solution under UV light irradiation. The effects of calcination temperature, the amount of TiO2 loading and pH on photocatalytic activities were discussed. The results show that TiO2 supported on opal induced enhancement of photocatalytic decolorization rant and TiO2 doping is about 30 wt. % with 92.15% of decolorization rate at 700°C.


2013 ◽  
Vol 821-822 ◽  
pp. 80-84
Author(s):  
Bin Li ◽  
Xiao Gang Yang ◽  
Fang Lin Du

Bismuth-based oxides have attractive photocatalytic properties under visible light. Bismuth vanadate (BiVO4) particles as a visible light-responsive photocatalyst were prepared by a facile hydrothermal reaction method with the different solvent using Bi(NO3)3·5H2O and NH4VO3 as raw materials at 180°C for 18h. The as-prepared samples were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-vis absorption spectra (UV-vis). The photocatalytic activity of BiVO4 crystals was evaluated using the photocatalytic oxidation of methylene blue (MB) at room temperature under visible light irradiation. It was found that the morphology and the band gap adsorption edge of BiVO4 are different with the different solvent. The widest band gap energy of BiVO4 obtained with ethylene glycol as solvent is 2.405eV. In addition, the BiVO4 powders exhibit a certain photocatalytic properties to photodegrade MB and the maximum photocatalytic degradation rate is 34% using BiVO4 prepared with water as solvent for 2h.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7002
Author(s):  
Jiayi Chen ◽  
Kuang Wang ◽  
Jialong Tian ◽  
Wenhui Yu ◽  
Yujie Chen ◽  
...  

In this work, a visible-light-driven BiOCl/Bi2WO6 photocatalyst was obtained via a facile hydrothermal method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), X-ray photoelectron spectroscopy (XPS), ultraviolet/visible light diffuse reflection spectroscopy (UV/Vis), and photocurrent (PC). BiOCl/Bi2WO6 was modified with (3-chloro-2-hydroxypropyl) trimethyl ammonium chloride to obtain the cationized BiOCl/Bi2WO6. Cotton fabric was pretreated with sodium hydroxide (NaOH) and sodium chloroacetate solution to obtain carboxymethylated cotton fabric, which was further reacted with cationized BiOCl/Bi2WO6 to achieve finished cotton fabric. The cotton fabrics were characterized by Fourier-transform infrared spectroscopy (FT-IR), XRD, SEM, and EDS. The photocatalytic activity of the BiOCl/Bi2WO6 photocatalyst and cotton fabrics was assessed by photocatalytic degradation of MB (methylene blue) solution under simulated visible light. The self-cleaning property of cotton fabrics was evaluated by removing MB solution and red-wine stains. Results revealed that the coated cotton fabrics exhibited appreciable photocatalytic and self-cleaning performance. In addition, anti-UV studies showed that the finished cotton fabrics had remarkable UV blocking properties in the UVA and UVB regions. Therefore, the finished cotton fabric with BiOCl/Bi2WO6 can provide a framework for the development of multifunctional textiles.


2019 ◽  
Vol 9 (16) ◽  
pp. 3282 ◽  
Author(s):  
Zhongtian Fu ◽  
Song Zhang ◽  
Zhongxue Fu

A series of composite photocatalysts were prepared by using graphene oxide (GO) prepared by modified Hummers method and TiO2 hydrogel prepared by using butyl titanate as raw materials. The composite photocatalyst was characterized through scanning electron microscope(SEM), x ray diffraction (XRD), and Raman spectroscopy, and the degradation effect of pure TiO2 and composite photocatalyst on methylene blue (MB) dye wastewater under different experimental conditions was studied. The results showed that TiO2 in composite photocatalyst was mainly anatase phase and its photocatalytic activity was better than pure TiO2. When the addition of GO reached 15 wt%, the photocatalytic activity was the highest. When 200 mg composite photocatalyst was added to 200 mL synthetic wastewater with a concentration of 10 mg/L and an initial pH of about 8, the degradation rate could reach 95.8% after 2.5 h. It is presumed that the photogenerated charges of GO/TiO2 composite photocatalyst may directly destroy the luminescent groups in the MB molecule and thus decolorize the wastewater, and no other new luminescent groups are generated during the treatment.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Fiza Akram ◽  
Muhammad Saeed ◽  
Javaid Akhtar ◽  
Syed Ali Raza Naqvi ◽  
Atta ul Haq

Abstract This study reports the fabrication of Fe2O3, Bi2O3, and BiFeO3, characterization and evaluation of the photocatalytic performances for methylene blue dye degradation. The materials were synthesized by precipitation method and characterized by scanning electron microscopy, X-ray diffraction, energy dispersive X-rays analyses, and Fourier transform infrared analyses. The photocatalytic activities of Fe2O3, Bi2O3, and BiFeO3 were compared by performing degradation experiments with 50 mL of 100 mg/L methylene blue solution. The as-prepared BiFeO3 was found as 2.4 times and 1.7 times more effective than Fe2O3 and Bi2O3, with a 79, 47, and 57% catalytic activity, respectively. The degradation of methylene blue over the BiFeO3 catalyst was optimized in terms of pH, catalyst dosage, temperature, and methylene blue concentration. The Eley–Rideal mechanism was proposed to describe the reaction kinetics in terms of the first order and second order kinetics model. Activation energy E (kJ/mol), enthalpy ΔH (kJ/mol), entropy ΔS (J/mol) and free energy ΔG (kJ/mol) were calculated as 20.8, 18.2, 197.5 and −45.3 respectively. The negative value of free energy shows that photodegradation is favored in present conditions.


Sign in / Sign up

Export Citation Format

Share Document