Manipulation of Microparticles Using Acoustic Standing Wave: Recent Trend

2013 ◽  
Vol 433-435 ◽  
pp. 460-463
Author(s):  
Hai Yan Yin ◽  
Chun Cheng Zuo ◽  
Hong Cheng Wang ◽  
Yan Ping Meng

Ultrasonic standing wave (USW) manipulation of suspension microparticles separation has attracted wide attention due to its non-direct contact, being harmless to the particles, easy to manufacture, low energy consumption and high separation efficiency. USW is widely used in industrial processes, environmental assessment, biochemical analysis, clinical diagnosis and other fields. In this article, particles stress and movement process is analyzed, meanwhile, aggregation and separation of the particles is discussed respectively and the future direction of development is pointed out.

Author(s):  
Enmin Lv ◽  
Shaoxuan Ding ◽  
Jie Lu ◽  
Weiming Yi ◽  
Jincheng Ding

AbstractFatty acids (FAs) are a very important group of raw materials for chemical industry, and the technology of separating or purifying the FAs from the reaction product mixture has always been the hotspot of research. Membrane processes for separation of FAs are being increasingly reported. Compared with conventional FAs separation methods, membrane separation has the advantages of low energy consumption, system compactness, high separation efficiency, easy scale-up, high available surface area per unit volume and low working temperatures, thereby attracting considerable attention of many researchers. In this regards, this paper critically reviewed the developments of methods for FAs separation and purification, and the future prospects of coupling membrane technology with hydrolysis for enhanced production of FAs.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 315-315 ◽  
Author(s):  
Anke Urbansky ◽  
Andreas Lenshof ◽  
Josefina Dykes ◽  
Thomas Laurell ◽  
Stefan Scheding

Abstract Introduction: Processing of peripheral blood progenitor cells (PBPC) for clinical transplantation or research applications aims to effectively isolate or deplete specific cell populations. We have previously reported the use of a novel ultrasound-based sorting technology, called acoustophoresis, for sorting of platelets (Dykes et al., PloS one 2011) and CD4+ cells from PBPC products (Lenshof et al., Cytometry Part A 2014). Here, we investigated the performance of microfluidic acoustophoresis for the separation of CD8+ lymphocytes from PBPC, and present a method for affinity-bead-mediated acoustic separation of cells which otherwise cannot be discriminated acoustically. In an acoustic standing wave field radiation forces induce movement of particles depending on particle and medium properties, such as for example particle size, density and compressibility. Targeting of cells by affinity specific beads generates cell-bead complexes that exhibit distinct acoustic properties relative to non-targeted cells and, thus, become possible to isolate. Method: PBPC samples (n=16) were obtained from patients and healthy donors. Following density gradient centrifugation, mononuclear cells were labelled with anti-CD8 microbeads (Dynal) and sorted either on an acoustophoresis-microchip (Figure 1) or standard magnetic cell sorting technique for comparison. PBPC samples, target and waste fractions were analysed for purity, separation efficiency, recovery, T-cell function and progenitor cell content. Results: PBPC products contained a mean of 11.6 ± 7.1% CD8+ cells before sorting. Purities obtained with acoustic sorting of CD8+ lymphocytes were 93.3 ± 6.8% compared to 94.4 ± 8.6% for magnetic sorting (n=16). Viabilities of sorted cells were 97.0 ± 3.9% (acoustic) and 97.5 ± 3.5% (magnetic). Mean separation efficiency recovery of acoustic sorted CD8+ cells was 57 ± 19% of the total CD8+ cells compared to a median recovery of magnetic sorted CD8+ cells of 43 ± 17%. Leukocyte subpopulation analysis performed after CD8 selection showed a relative increase of CD4 cells in the non-target fractions due to the removal of CD8 cells. Functional testing of sorted CD8+ lymphocytes showed unimpaired mitogen mediated proliferation capacity after 2-day, 4-day and 6-day stimulation with CD3/CD28. Furthermore, hematopoietic progenitor cell assays revealed a preserved colony forming ability of the post-sorted non-target cells Conclusion: Acoustophoresis is a promising technology to efficiently sort bead-labelled lymphocyte populations from PBPC samples with high purity and recovery without impairing lymphocyte function. Affinity-bead acoustophoresis is, thus, an interesting technology for stem cell processing in PBPC. Figure 1 Picture of the acoustophoresis platform. The cell suspension with bead-labeled CD8+ cells enters through the side inlets (a) while the wash buffer (Histopaque-1077) is injected through the center inlet (b). Radiation forces in the acoustic standing wave field move the cell-bead complex faster to the center compared to non-target cells and can be separated in the center outlet of the channel (c). Non-target cells exit through the side outlets (d). The total length of the acoustophoresis microchip is 35mm. Figure 1. Picture of the acoustophoresis platform. The cell suspension with bead-labeled CD8+ cells enters through the side inlets (a) while the wash buffer (Histopaque-1077) is injected through the center inlet (b). Radiation forces in the acoustic standing wave field move the cell-bead complex faster to the center compared to non-target cells and can be separated in the center outlet of the channel (c). Non-target cells exit through the side outlets (d). The total length of the acoustophoresis microchip is 35mm. Disclosures Laurell: Acousort AB: shareholder Other. Scheding:Acousort AB: Co-founder and board member Other.


Author(s):  
Khin Nwe Zin Tun ◽  
Khine Zin Mar ◽  
Thein Min Htike

Acoustophoresis is the technology to separate the microparticles and cells from suspending fluid. This research focuses on the separation of nanoparticles from water by using macro-scale fluidic separator which works based on gravity-aided ultrasonic standing wave technology. Titanium dioxide particles of 40 nm diameter were concentrated by the combination of ultrasonic standing wave field at 2.2 MHz and gravity-aided sedimentation. The purpose of this study is to investigate the performance of gravity-aided ultrasonic particle to concentrate nanoparticles. It was found that the separation efficiency is 83% at a flow rate of 0.1 mL/min. FEM simulations were also conducted to evaluate characteristics of variation of acoustic energy inside the fluidic channel. Results indicate that nanoparticles can be concentrated using gravity-aided ultrasonic standing wave field, however optimization of the design of the fluidic channel is required for increasing throughput of the separator.


2011 ◽  
Vol 233-235 ◽  
pp. 926-929
Author(s):  
Qun Qun Huang ◽  
Jun Lin ◽  
Zheng Gui Gu

Methods of separating mixed isomers of nitrochlorobenzene (NCB) were reviewed and analyzed in this paper, A new integrated technology including multiple side-draw distillation and continuous crystallization was raised for refining of high-purityp-nitrochlorobenzene(p-NCB) ando-nitrochlorobenzene(o-NCB) from the NCB mixture. Eventually, over 99% purity ofp-NCB ando-NCB can be obtained, and the comprehensive yield is higher than 90%. Compared with the traditional process, the new technology has obvious advantages due to its simple process, high separation efficiency, and low energy consumption.


Author(s):  
Yajing Wang ◽  
Liqun Wu ◽  
Yaxing Wang ◽  
Yafei Fan

A new method of removing waste chips is proposed by focusing on the key factors affecting the processing quality and efficiency of high energy beams. Firstly, a mathematical model has been established to provide the theoretical basis for the separation of solid–liquid suspension under ultrasonic standing wave. Secondly, the distribution of sound field with and without droplet has been simulated. Thirdly, the deformation and movement of droplets are simulated and tested. It is found that the sound pressure around the droplet is greater than the sound pressure in the droplet, which can promote the separation of droplets and provide theoretical support for the ultrasonic suspension separation of droplet; under the interaction of acoustic radiation force, surface tension, adhesion, and static pressure, the droplet is deformed so that the gas fluid around the droplet is concentrated in the center to achieve droplet separation, and the droplet just as a flat ball with a central sag is stably suspended in the acoustic wave node.


RSC Advances ◽  
2020 ◽  
Vol 10 (72) ◽  
pp. 44593-44600
Author(s):  
Li Li ◽  
Ning Gu ◽  
Huijuan Dong ◽  
Bingsheng Li ◽  
Kenneth T. V. G.

Influence of acoustic standing wave field creating acoustic levitation, on each development stage of early zebrafish embryos has been studied.


Sign in / Sign up

Export Citation Format

Share Document