Open tubular capillary column of 50 μm internal diameter with a very high separation efficiency for the separation of peptides in CEC and LC

2017 ◽  
Vol 40 (12) ◽  
pp. 2654-2661 ◽  
Author(s):  
Ashraf Ali ◽  
Won Jo Cheong
Author(s):  
Dani Fadda ◽  
David Barker

Vane separators are inertial devices used to remove entrained liquids from gas. They are utilized in pressure vessels operating at a wide range of temperatures and pressures. Computational Fluid Dynamics (CFD) modeling and sizing calculations are used to evaluate the loading to a vane separator and determine the maximum overall gas and liquid handling capacity of the pressure vessel. Test results, performed at operating pressures up to 133 bar (1931 psia) using live natural gas illustrate that, when sized correctly based on the vane’s capacity curves and CFD modeling, vane separators continue to have high separation efficiency at very high operating pressures.


2017 ◽  
Vol 2 (4) ◽  
Author(s):  
Beibei Chen ◽  
Man He ◽  
Huashan Zhang ◽  
Zucheng Jiang ◽  
Bin Hu

AbstractThe present capability of rare earth element (REE) analysis has been achieved by the development of two instrumental techniques. The efficiency of spectroscopic methods was extraordinarily improved for the detection and determination of REE traces in various materials. On the other hand, the determination of REEs very often depends on the preconcentration and separation of REEs, and chromatographic techniques are very powerful tools for the separation of REEs. By coupling with sensitive detectors, many ambitious analytical tasks can be fulfilled.Liquid chromatography is the most widely used technique. Different combinations of stationary phases and mobile phases could be used in ion exchange chromatography, ion chromatography, ion-pair reverse-phase chromatography and some other techniques. The application of gas chromatography is limited because only volatile compounds of REEs can be separated. Thin-layer and paper chromatography are techniques that cannot be directly coupled with suitable detectors, which limit their applications. For special demands, separations can be performed by capillary electrophoresis, which has very high separation efficiency.


2021 ◽  
Author(s):  
Anup Kumar Bairagi ◽  
Kollati Prudhvi Ravikumar ◽  
Abanti Sahoo ◽  
Soumya Sanjeeb Mohapatra ◽  
Sangam Agrawal

Abstract The large amount of wastewater generated from textile industries, petroleum industries, chemical industries contains heavy metals, suspended solids, hazardous waste, oils, fatty acids, dyes, pigment etc. It is very important to improve the quality of contaminated water before it discharges into the water sources or use. In the current work, an efficient methodology has been developed to separate emulsified oil from wastewater. The emulsified oil is tried to separate by using poly silicate Ferro aluminium sulphates, a flocculent. In addition to the above, the maximum separation efficiency for the devolved process is also revealed. Using PSFA, up to 93.5 % separation efficiency is achieved, and the discussed methodology can separate emulsified forms of the oil without altering the efficiency. The dissolved solid and metal content are also considered as the controlling parameters for the separation efficiency. The optimum TDS and the metal content must be maintained at 560 mg/L and 2 mg/L, respectively, to attain maximum separation efficiency.


Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 922
Author(s):  
Xianghao Meng ◽  
Shujuan Meng ◽  
Yu Liu

Microfiltration and ultrafiltration for water/wastewater treatment have gained global attention due to their high separation efficiency, while membrane fouling still remains one of their bottlenecks. In such a situation, many researchers attempt to obtain a deep understanding of fouling mechanisms and to develop effective fouling controls. Therefore, this article intends to trigger discussions on the appropriate choice of foulant surrogates and the application of mathematic models to analyze fouling mechanisms in these filtration processes. It has been found that the commonly used foulant surrogate (sodium alginate) cannot ideally represent the organic foulants in practical feed water to explore the fouling mechanisms. More surrogate foulants or extracellular polymeric substance (EPS) extracted from practical source water may be more suitable for use in the studies of membrane fouling problems. On the other hand, the support vector machine (SVM) which focuses on the general trends of filtration data may work as a more powerful simulation tool than traditional empirical models to predict complex filtration behaviors. Careful selection of foulant surrogate substances and the application of accurate mathematical modeling for fouling mechanisms would provide deep insights into the fouling problems.


2021 ◽  
Vol 8 ◽  
Author(s):  
Michiel Van de Voorde ◽  
Charlotte Duchemin ◽  
Reinhard Heinke ◽  
Laura Lambert ◽  
Eric Chevallay ◽  
...  

Samarium-153 (153Sm) is a highly interesting radionuclide within the field of targeted radionuclide therapy because of its favorable decay characteristics. 153Sm has a half-life of 1.93 d and decays into a stable daughter nuclide (153Eu) whereupon β− particles [E = 705 keV (30%), 635 keV (50%)] are emitted which are suitable for therapy. 153Sm also emits γ photons [103 keV (28%)] allowing for SPECT imaging, which is of value in theranostics. However, the full potential of 153Sm in nuclear medicine is currently not being exploited because of the radionuclide's limited specific activity due to its carrier added production route. In this work a new production method was developed to produce 153Sm with higher specific activity, allowing for its potential use in targeted radionuclide therapy. 153Sm was efficiently produced via neutron irradiation of a highly enriched 152Sm target (98.7% enriched, σth = 206 b) in the BR2 reactor at SCK CEN. Irradiated target materials were shipped to CERN-MEDICIS, where 153Sm was isolated from the 152Sm target via mass separation (MS) in combination with laser resonance enhanced ionization to drastically increase the specific activity. The specific activity obtained was 1.87 TBq/mg (≈ 265 times higher after the end of irradiation in BR2 + cooling). An overall mass separation efficiency of 4.5% was reached on average for all mass separations. Further radiochemical purification steps were developed at SCK CEN to recover the 153Sm from the MS target to yield a solution ready for radiolabeling. Each step of the radiochemical process was fully analyzed and characterized for further optimization resulting in a high efficiency (overall recovery: 84%). The obtained high specific activity (HSA) 153Sm was then used in radiolabeling experiments with different concentrations of 4-isothiocyanatobenzyl-1,4,7,10-tetraazacyclododecane tetraacetic acid (p-SCN-Bn-DOTA). Even at low concentrations of p-SCN-Bn-DOTA, radiolabeling of 0.5 MBq of HSA 153Sm was found to be efficient. In this proof-of-concept study, we demonstrated the potential to combine neutron irradiation with mass separation to supply high specific activity 153Sm. Using this process, 153SmCl3 suitable for radiolabeling, was produced with a very high specific activity allowing application of 153Sm in targeted radionuclide therapy. Further studies to incorporate 153Sm in radiopharmaceuticals for targeted radionuclide therapy are ongoing.


NANO ◽  
2015 ◽  
Vol 10 (02) ◽  
pp. 1550022 ◽  
Author(s):  
Yangcun Xie ◽  
Xiuwen Wang ◽  
Xu Wen

In this study, silver orthophosphate@carbon layer ( Ag 3 PO 4@ C ) core/shell heterostructure photocatalyst was prepared for the first time. The results showed that a uniform carbon layer was formed around the Ag 3 PO 4. By adjusting the hydrothermal fabrication parameters, the thickness of carbon layer could be easily controlled. Furthermore, the Ag 3 PO 4@ C had remarkable light absorption in the visible region. Photocatalytic tests displayed that the Ag 3 PO 4@ C heterostructures possessed a much higher degradation rate of phenol than pure Ag 3 PO 4 under visible light. The enhanced photocatalytic activity could be attributed to high separation efficiency of photogenerated electrons and holes based on the synergistic effect between carbon as a sensitizer and Ag 3 PO 4. Recycle tests showed that the Ag 3 PO 4@ C core/shell heterostructures maintained high stability over several cycles. The good stability could be attributed to the protection of insoluble carbon layer on the surfaces of Ag 3 PO 4 crystals in aqueous solution.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Faheem Ejaz ◽  
William Pao ◽  
Hafiz Muhammad Ali

Purpose Offshore industries encounter severe production downtime due to high liquid carryovers in the T-junction. The diameter ratio and flow regime can significantly affect the excess liquid carryovers. Unfortunately, regular and reduce T-junctions have low separation efficiencies. Ansys as a commercial computational fluid dynamics (CFD) software was used to model and numerically inspect a novel diverging T-junction design. The purpose of diverging T-junction is to merge the specific characteristics of regular and reduced T-junctions, ultimately increasing separation efficiency. The purpose of this study is to numerically compute the separation efficiency for five distinct diverging T-junctions for eight different velocity ratios. The results were compared to regular and converging T-junctions. Design/methodology/approach Air-water slug flow was simulated with the help of the volume of the fluid model, coupled with the K-epsilon turbulence model to track liquid-gas interfaces. Findings The results of this study indicated that T-junctions with upstream and downstream diameter ratio combinations of 0.8–1 and 0.5–1 achieved separation efficiency of 96% and 94.5%, respectively. These two diverging T-junctions had significantly higher separation efficiencies when compared to regular and converging T-junctions. Results also revealed that over-reduction of upstream and downstream diameter ratios below 0.5 and 1, respectively, lead to declination in separation efficiency. Research limitations/implications The present study is constrained for air and water as working fluids. Nevertheless, the results apply to other applications as well. Practical implications The proposed T-junction is intended to reduce excessive liquid carryovers and frequent plant shutdowns. Thus, lowering operational costs and enhancing separation efficiency. Social implications Higher separation efficiency achieved by using diverging T-junction enabled reduced production downtimes and resulted in lower maintenance costs. Originality/value A novel T-junction design was proposed in this study with a separation efficiency of higher than 90%. High separation efficiency eliminates loss of time during shutdowns and lowers maintenance costs. Furthermore, limitations of this study were also addressed as the lower upstream and downstream diameter ratio does not always enhance separation efficiency.


Sign in / Sign up

Export Citation Format

Share Document