Dynamic Characteristic Research on Thin Rim Structure for Herringbone Planetary Gear Train

2010 ◽  
Vol 44-47 ◽  
pp. 1514-1518
Author(s):  
Shang Jun Ma ◽  
Geng Liu ◽  
Zhong Hong Bu

A torsional and translational vibration dynamics model for serial herringbone planetary gear train, which considers the effects of the time-varying errors and meshing stiffness as well as elastic coupling between two stage trains at the same time, was established by using lumped mass method. Time domain dynamic load excitation which derived from dynamics equation is taken as the input of steady-state response solution. The steady-state response of gear structure was solved with mode superposition method combined with external judgment program. The effects of rim thickness for thin wall herringbone planetary gear and single-stage internal gear were also analyzed. Through the comparison, the displacement and stress results of key locations on structure have reached the satisfying and disirable values when the rim thickness of planetary gear is greater than 4.0 mn and rim thickness of internal gear greater than 6.5 mn.

2012 ◽  
Vol 232 ◽  
pp. 955-960 ◽  
Author(s):  
Long Chang Hsieh ◽  
Hsiu Chen Tang

Recently, bicycles are used as exercising machines and traffic vehicles. Planetary gear trains can be used as the transmission systems with multi-speed for bicycles. The purpose of this work is to propose a design methodology for the design of eight-speed internal gear hubs with planetary gear trains for bicycles. First, we propose a design concept for the design of eight-speed planetary gear hub. Then, based on this design concept and train value equation of planetary gear train, the kinematic design of eight-speed planetary gear hub is accomplished. One eight-speed planetary gear hub is synthesized to illustrate the design methodology. Based on the proposed design methodology, many eight-speed internal gear hubs with planetary gear trains can be synthesized.


2013 ◽  
Vol 404 ◽  
pp. 312-317 ◽  
Author(s):  
Xian Zeng Liu ◽  
Jun Zhang

A dynamic model for helical planetary gear train (HPGT) is proposed. Based on the model, the free vibration characteristics, steady-state dynamic responses and effects of design parameters on system dynamics are investigated through numerical simulations. The free vibration of the HGPT is classified into 3 categories. The classified vibration modes are demonstrated as axial translational and torsional mode (AT mode), radial translational and rotational mode (RR mode) and planet mode (P mode) followed by the characteristics of each category. The simulation results agree well with those of previous discrete model when neglecting the component flexibilities, which validates the correctness of the present dynamic model. The steady-state dynamic responses indicate that the dynamic meshing forces fluctuate about the average static values and the time-varying meshing stiffness is one of the major excitations of the system. The parametric sensitivity analysis shows that the impact of the central component bearing stiffness on the dynamic characteristic of the HPGT system is significant.


Author(s):  
Heyun Bao ◽  
Huan Liu ◽  
Rupeng Zhu ◽  
Fengxia Lu ◽  
Miaomiao Li

A bending-torsional coupled nonlinear dynamic model which contains the modification parameters of herringbone planetary gear train is presented. A formula of modification incentive is analyzed and deduced. The impact of the straight line and parabolic modification parameters on the amplitude of system transmission error is researched. The optimum modification parameters are acquired according to the minimum amplitude of system transmission error. Different amplitudes of the system transmission error, before and after modification, are compared at different rotational speed. The results indicate that the straight line modification parameters on the amplitude of system transmission error are more sensitive. Modification parameters on the amplitude of system transmission error are researched. When the length of the modification is specified, the amplitude of system transmission error is reduced sharply at first, then increased rapidly with the maximum magnitude of the modification increasing; When the maximum magnitude of the modification is specified, the amplitude of system transmission error is increased weakly at first, then decreased sharply, and increased rapidly in the end, with the length of the modification increasing. The modification parameters could form a crescent-shaped zone which can reduce the system transmission error amplitude significantly. The amplitudes of the system transmission error with modification are all reduced at different rotational speed, especially when there is a sympathetic vibration.


Sign in / Sign up

Export Citation Format

Share Document