Subharmonic Bifurcations and Transition to Chaos in a Pipe Conveying Fluid under Harmonic Excitation

2013 ◽  
Vol 444-445 ◽  
pp. 791-795
Author(s):  
Yi Xiang Geng ◽  
Han Ze Liu

The subharmonic and chaotic behavior of a two end-fixed fluid conveying pipe whose base is subjected to a harmonic excitation are investigated. Melnikov method is applied for the system, and Melnikov criterions for subharmonic and homoclinic bifurcations are obtained analytically. The numerical simulations (including bifurcation diagrams, maximal Lyapunov exponents, phase portraits and Poincare map) confirm the analytical predictions and exhibit the complicated dynamical behaviors.

2012 ◽  
Vol 26 (32) ◽  
pp. 1250210 ◽  
Author(s):  
YIXIANG GENG ◽  
LIXIANG ZHANG

The chaotic behavior of a carbon nanotube with waviness along its axis is investigated. The equation of motion involves a quadratic and cubic terms due to the curved geometry and the mid-plane stretching. Melnikov method is applied for the system, and Melnikov criterion for global homoclinic bifurcations is obtained analytically. The numerical solution of the system using a fourth-order-Runge–Kutta method confirms the analytical predictions and shows that the transition from regular to chaotic motion is often associated with increasing the energy of an oscillator. Moreover, a detailed numerical study of the periodic attractor in the period window is also carried out.


Author(s):  
Rafael H. Avanço ◽  
Helio A. Navarro ◽  
Airton Nabarrete ◽  
José M. Balthazar ◽  
Angelo Marcelo Tusset

In literature, the classic parametrically excited pendulum is vastly studied. It consists of a pendulum vertically displaced with a harmonic motion in the support while it oscillates. The chaos in this mechanism may appear depending on the frequency and amplitude of excitation in superharmonic and subharmonic resonance. The double pendulum is also well analyzed in literature, but not under parametric excitation. Therefore, this is the novelty in the present paper. The present analysis considers a double pendulum under a harmonic excitation following the same idea performed previously for a single pendulum. The results are obtained based on methods, such as, phase portraits, Poincaré sections and bifurcation diagrams. The 0–1 tests analyze the presence of chaos while the parameters are varied. The dimensionless parameters take into account the excitation frequency and amplitude as mentioned for the classic parametric pendulum. In this case, we have the particular characteristic that the two pendulums have the same length, the same mass and the same friction coefficient in the joints. The types of motion observed include fixed points, oscillations, rotations and chaos. Results also demonstrated that there was a self-synchronization between these pendulums in ideal excitation.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Yanxiang Shi

Two types of coronary artery system N-type and S-type, are investigated. The threshold conditions for the occurrence of Smale horseshoe chaos are obtained by using Melnikov method. Numerical simulations including phase portraits, potential diagram, homoclinic bifurcation curve diagrams, bifurcation diagrams, and Poincaré maps not only prove the correctness of theoretical analysis but also show the interesting bifurcation diagrams and the more new complex dynamical behaviors. Numerical simulations are used to investigate the nonlinear dynamical characteristics and complexity of the two systems, revealing bifurcation forms and the road leading to chaotic motion. Finally the chaotic states of the two systems are effectively controlled by two control methods: variable feedback control and coupled feedback control.


2013 ◽  
Vol 444-445 ◽  
pp. 796-800
Author(s):  
Yi Xiang Geng ◽  
Han Ze Liu

The existence and stability of subharmonic oscillations in a two end-fixed fluid conveying pipe whose base is subjected to a harmonic excitation are investigated. A Galerkin approach is utilized to reduce the equation of motion to a second order nonlinear differential equation. The conditions for the existence of subharmonic oscillations are given by using Melnikov method. The stability of subharmonic oscillations is discussed in detail by using action-angle variable and averaging method. It is shown that the velocity of fluid plays an important role in the stability of subharmonic oscillations.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Hengguo Yu ◽  
Min Zhao

On the basis of the theories and methods of ecology and ordinary differential equation, a seasonally perturbed prey-predator system with the Beddington-DeAngelis functional response is studied analytically and numerically. Mathematical theoretical works have been pursuing the investigation of uniformly persistent, which depicts the threshold expression of some critical parameters. Numerical analysis indicates that the seasonality has a strong effect on the dynamical complexity and species biomass using bifurcation diagrams and Poincaré sections. The results show that the seasonality in three different parameters can give rise to rich and complex dynamical behaviors. In addition, the largest Lyapunov exponents are computed. This computation further confirms the existence of chaotic behavior and the accuracy of numerical simulation. All these results are expected to be of use in the study of the dynamic complexity of ecosystems.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Ling Liu ◽  
Chongxin Liu

A novel nonlinear four-dimensional hyperchaotic system and its fractional-order form are presented. Some dynamical behaviors of this system are further investigated, including Poincaré mapping, parameter phase portraits, equilibrium points, bifurcations, and calculated Lyapunov exponents. A simple fourth-channel block circuit diagram is designed for generating strange attractors of this dynamical system. Specifically, a novel network module fractance is introduced to achieve fractional-order circuit diagram for hardware implementation of the fractional attractors of this nonlinear hyperchaotic system with order as low as 0.9. Observation results have been observed by using oscilloscope which demonstrate that the fractional-order nonlinear hyperchaotic attractors exist indeed in this new system.


2017 ◽  
Vol 27 (08) ◽  
pp. 1750125 ◽  
Author(s):  
Tao Jiang ◽  
Zhiyan Yang ◽  
Zhujun Jing

We study the Duffing equation with parametric excitation and single external forcing and obtain abundant dynamical behaviors of bifurcations and chaos. The criteria of chaos of the Duffing equation under periodic perturbation are obtained through the Melnikov method. And the existence of chaos of the averaged system of the Duffing equation under the quasi-periodic perturbation [Formula: see text] (where [Formula: see text] is not rational relative to [Formula: see text]) and [Formula: see text] is shown, but the existence of chaos of averaged system of the Duffing equation cannot be proved when [Formula: see text],[Formula: see text]7–15, whereas the occurrence of chaos in the original system can be shown by numerical simulation. Numerical simulations not only show the correctness of the theoretical analysis but also exhibit some new complex dynamical behaviors, including homoclinic or heteroclinic bifurcation surfaces, bifurcation diagrams, Lyapunov exponent diagrams, phase portraits and Poincaré maps. We find a large chaotic region with some solitary period parameter points, a large period and quasi-period region with some solitary chaotic parameter points, period-doubling to chaos and chaos to inverse period-doubling, nondense curvilinear chaotic attractor, nonattracting chaotic motion, nonchaotic attracting set, fragmental chaotic attractors. Almost chaotic motion and almost nonchaotic motion appear through adjusting the parameters of the Duffing system, which can be taken as a strategy of chaotic control or a strategy of chaotic motion to nonchaotic motion.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 161
Author(s):  
Sameh Askar ◽  
Abdulrahman Al-khedhairi ◽  
Amr Elsonbaty ◽  
Abdelalim Elsadany

Using the discrete fractional calculus, a novel discrete fractional-order food chain model for the case of strong pressure on preys map is proposed. Dynamical behaviors of the model involving stability analysis of its equilibrium points, bifurcation diagrams and phase portraits are investigated. It is demonstrated that the model can exhibit a variety of dynamical behaviors including stable steady states, periodic and quasiperiodic dynamics. Then, a hybrid encryption scheme based on chaotic behavior of the model along with elliptic curve key exchange scheme is proposed for colored plain images. The hybrid scheme combines the characteristics of noise-like chaotic dynamics of the map, including high sensitivity to values of parameters, with the advantages of reliable elliptic curves-based encryption systems. Security analysis assures the efficiency of the proposed algorithm and validates its robustness and efficiency against possible types of attacks.


2020 ◽  
Vol 49 (2) ◽  
pp. 317-332
Author(s):  
Aixue Qi ◽  
Lei Ding ◽  
Wenbo Liu

We propose a meminductor-based chaotic system. Theoretical analysis and numerical simulations reveal complex dynamical behaviors of the proposed meminductor-based chaotic system with five unstable equilibrium points and three different states of chaotic attractors in its phase trajectory with only a single change in circuit parameter. Lyapunov exponents, bifurcation diagrams, and phase portraits are used to investigate its complex chaotic and multi-stability behaviors, including its coexisting chaotic, periodic and point attractors. The proposed meminductor-based chaotic system was implemented using analog integrators, inverters, summers, and multipliers. PSPICE simulation results verified different chaotic characteristics of the proposed circuit with a single change in a resistor value.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Junhong Li ◽  
Ning Cui

The discrete-time epidemic model is investigated, which is obtained using the Euler method. It is verified that there exist some dynamical behaviors in this model, such as transcritical bifurcation, flip bifurcation, Hopf bifurcation, and chaos. The numerical simulations, including bifurcation diagrams and computation of Lyapunov exponents, not only show the consistence with the theoretical analysis but also exhibit the rich and complex dynamical behaviors.


Sign in / Sign up

Export Citation Format

Share Document