Design and Kinematic Analysis of Parallel Robot for Ankle Rehabilitation

2013 ◽  
Vol 446-447 ◽  
pp. 1279-1284 ◽  
Author(s):  
Muhammad Nazrin Shah Bin Shahrol Aman ◽  
Shafriza Nisha Bin Basah

Ankle injury is one of the most common injuries in sports or domestic related accidents. This injury can usually be treated via a number of rehabilitation exercises. However, currently rehabilitation of ankle injury directly depends of physiotherapy session administered by experts; which is tedious and expensive in nature. In this paper, we proposed a concept based on parallel mechanism to assist patients undergoing ankle rehabilitation procedures. This is due to a number of advantages of parallel mechanism as compared to serial mechanism higher payload-to-weight ratio, structure rigidity, accuracy and relatively simple solution. We reported our design process; including the concept generation and selection according to a number of relevant design parameters. After which, followed by embodiment design involving kinematic analysis of the proposed mechanism. The findings, in terms of conceptual design and kinematic analysis should be able to provide an insight for ankle rehabilitation based on suitable parallel mechanism.

2015 ◽  
Vol 76 (12) ◽  
Author(s):  
Muhammad Nazrin Shah Shahrol Aman ◽  
Shafriza Nisha Basah ◽  
Wan Khairunzam Wan Ahmad ◽  
Shahriman Abu Bakar

Ankle injury is one of physical injury that can happen whether in sports or in domestic accidents. The injury can take from weeks to months to recover and requires physiotherapy treatment for effective recovery. Currently, there are established treatments for ankle rehabilitation in hospital such as endurance training and range-of-motion training. However, the success of rehabilitation for ankle injury directly depends on physiotherapy administered by experts. This conventional therapy treatment requires patients to frequently visit to hospital which is tedious and costly. To solve this, researchers have introduced a number of robot-aided ankle rehabilitation devices which has been developed in the last decade. However, those devices are bulky and do not designed for portability and configurability – which is an important feature for patients undergoing rehabilitation at home. In this paper, we proposed a concept based on robot-aided ankle rehabilitation device to assist patients undergo rehabilitation procedures. We focused on all patients’ need especially based on important features such as portability and configurability of the device. Standard design process were followed including concept generation and concept selection according to all relevant criteria using Morphological Charts and Pugh Method.  A Pulley Driven Cable Based Parallel Mechanism robot-aided ankle rehabilitation device has been selected based on selections from 5 different concept design generated. We show that a design based on parallel mechanisms should provide the needed portability and configurability. This result provides an insight for a portable and configurable robot-aided ankle rehabilitation device.


Author(s):  
DU Hui ◽  
GAO Feng ◽  
PAN Yang

A novel 3-UP3R parallel mechanism with six degree of freedoms is proposed in this paper. One most important advantage of this mechanism is that the three translational and three rotational motions are partially decoupled: the end-effector position is only determined by three inputs, while the rotational angles are relative to all six inputs. The design methodology via GF set theory is brought out, using which the limb type can be determined. The mobility of the end-effector is analyzed. After that, the kinematic and velocity models are formulated. Then, workspace is studied, and since the robot is partially decoupled, the reachable workspace is also the dexterous workspace. In the end, both local and global performances are discussed using conditioning indexes. The experiment of real prototype shows that this mechanism works well and may be applied in many fields.


Author(s):  
Jody A. Saglia ◽  
Jian S. Dai

This paper presents the geometry and the kinematic analysis of a parallel manipulator developed for ankle rehabilitation, as the beginning of a control system design process. First the geometry of the parallel mechanism is described, secondly the equations for the inverse and the forward kinematics are obtained, then the forward kinematics is analyzed in order to define all the possible configurations of the moving platform. Finally the Jacobian matrix of the rig is obtained by differentiating the position equations and the singularities are investigated, comparing the non-redundant and redundant type of mechanism.


Author(s):  
Erick D. Flores-Salazar ◽  
Manuel Arias-Montiel ◽  
Esther Lugo-González ◽  
Jaime Gallardo-Alvarado ◽  
Ricardo Tapia-Herrera

Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6215
Author(s):  
Fares J. Abu-Dakka ◽  
Angel Valera ◽  
Juan A. Escalera ◽  
Mohamed Abderrahim ◽  
Alvaro Page ◽  
...  

Ankle injuries are among the most common injuries in sport and daily life. However, for their recovery, it is important for patients to perform rehabilitation exercises. These exercises are usually done with a therapist’s guidance to help strengthen the patient’s ankle joint and restore its range of motion. However, in order to share the load with therapists so that they can offer assistance to more patients, and to provide an efficient and safe way for patients to perform ankle rehabilitation exercises, we propose a framework that integrates learning techniques with a 3-PRS parallel robot, acting together as an ankle rehabilitation device. In this paper, we propose to use passive rehabilitation exercises for dorsiflexion/plantar flexion and inversion/eversion ankle movements. The therapist is needed in the first stage to design the exercise with the patient by teaching the robot intuitively through learning from demonstration. We then propose a learning control scheme based on dynamic movement primitives and iterative learning control, which takes the designed exercise trajectory as a demonstration (an input) together with the recorded forces in order to reproduce the exercise with the patient for a number of repetitions defined by the therapist. During the execution, our approach monitors the sensed forces and adapts the trajectory by adding the necessary offsets to the original trajectory to reduce its range without modifying the original trajectory and subsequently reducing the measured forces. After a predefined number of repetitions, the algorithm restores the range gradually, until the patient is able to perform the originally designed exercise. We validate the proposed framework with both real experiments and simulation using a Simulink model of the rehabilitation parallel robot that has been developed in our lab.


2012 ◽  
Vol 424-425 ◽  
pp. 369-372
Author(s):  
Jin Peng Zhou ◽  
Zhi Dan Zhong ◽  
Zhen Zhong Wang

3-dof wire-driven parallel mechanism is studied in this research. The kinematic analysis of this wire-driven parallel mechanism is given according to analytical method. The method for spline function is proposed to generate a continuous, smooth and noiseless trajectory of the wire. The simulation results, based on simulink, verify the rationality of this trajectory planning algorithm


2018 ◽  
Vol 10 (2) ◽  
Author(s):  
Jérôme Landuré ◽  
Clément Gosselin

This paper introduces a new architecture of spherical parallel robot which significantly extends the workspace when compared to existing architectures. To this end, the singularity locus is studied and the design parameters are chosen so as to confine the singularities to areas already limited by other constraints such as mechanical interferences. First, the architecture of the spherical redundant robot is presented and the Jacobian matrices are derived. Afterwards, the analysis of the singularities is addressed from a geometric point of view, which yields a description of the singularity locus expressed as a function of the architectural parameters. Then, the results are applied to an example set of architectural parameters, which are chosen in order to illustrate the advantages of the redundant architecture over current designs in terms of workspace.


2008 ◽  
Vol 130 (12) ◽  
Author(s):  
Jody A. Saglia ◽  
Jian S. Dai ◽  
Darwin G. Caldwell

This paper investigates the behavior of a type of parallel mechanisms with a central strut. The mechanism is of lower mobility, redundantly actuated, and used for sprained ankle rehabilitation. Singularity and dexterity are investigated for this type of parallel mechanisms based on the Jacobian matrix in terms of rank deficiency and condition number, throughout the workspace. The nonredundant cases with three and two limbs are compared with the redundantly actuated case with three limbs. The analysis demonstrates the advantage of introducing the actuation redundancy to eliminate singularities and to improve dexterity and justifies the choice of the presented mechanism for ankle rehabilitation.


Sign in / Sign up

Export Citation Format

Share Document