Research on the Conductivity of UV-Curable Conductive Ink

2013 ◽  
Vol 469 ◽  
pp. 51-54 ◽  
Author(s):  
Ling Ya Gu ◽  
Guo Yu Wang ◽  
Dan Dan Wang

In order to fulfill the demand of fine circuit board, a UV-curable conductive ink was prepared, and the factors affect conductivity of ink was studied. Different UV conductive paste was prepared with different kinds of conductive material to research the influence of conductive material on the conductivity of paste. Change the variety of photoinitiator to prepare UV-curable conductive ink, and the effect of photoinitiator on the conductivity of ink was also studied. The results indicated that the variety of conductive material has a great influence on the conductivity of UV-curable ink. The ink, which prepared with flaky and spherical silver powder, has the best conductive property. Whats more, the conductivity of UV-curable ink is different with the change of photoinitiator, which would lead different cross-linking reaction after curing.

Author(s):  
D. S. Vorunichev ◽  
K. Yu. Vorunicheva

A new direction in 3D printing was investigated – prototyping of single-sided, double-sided and multilayer printed circuit boards. The current capabilities and limitations of 3D printed circuit board printing technology were identified. A comparative analysis of the characteristics of two desktop 3D printers presented in the industry for prototyping radio electronics, as well as the first professional machine DragonFly LDM 2020, which is a mini-factory for prototyping multilayer printed circuit boards, was carried out. The first practical experience of working and printing on DragonFly LDM 2020 supplied to the megalaboratory “3D prototyping and control of multilayer printed circuit boards” of the Institute of Radio Engineering and Telecommunication Systems MIREA – Russian Technological University is presented. The first samples of electronic boards printed on a 3D printer by the method of inkjet printing were obtained. An additive technology for the production of multilayer printed circuit boards is considered: printing with two printheads with conductive and dielectric nano-ink with two curing systems: an infrared sintering system for conductive ink and a UV curing system for dielectric ink. The LDM (Dragonfly Lights-out Digital Manufacturing) production method with the necessary maintenance is presented. The method allows the system to work roundthe-clock with minimal human intervention, significantly increasing the productivity of 3D printing and expanding the possibilities of prototyping. The materials used for 3D printing of multilayer printed circuit boards and their characteristics were investigated: dielectric acrylate nano-ink (Dielectric Ink 1092 – Dielectric UV Curable Acrylates Ink), conducting ink with silver nanoparticles (AgCite™ 90072 Silver Nanoparticle Conductive Ink). The research carried out allows us to compare the technological standards of printed electronics with traditional methods of manufacturing multilayer printed circuit boards for a number of parameters.


1992 ◽  
Vol 271 ◽  
Author(s):  
Kevin J. Thorne ◽  
Stephen E. Johnson ◽  
Haixing Zheng ◽  
John D. Mackenzie ◽  
M. F Hawthorne

ABSTRACTTo prepare new polycarbosilane polymer precursors with high solubility and the capability of UV cross-linking, commercial polycarbosilane was modified by a chemical route. These modifications involved AlCl3 catalyzed chlorination reactions of polycarbosilane's Si-H bonds. The resultant Si-Cl bonds were substituted by a reaction with sodium acetylyde to form Si-C=CH ligands. These ligands are suitable for controlled, free radical initiated cross-linking of the polycarbosilane polymers. The increase in molecular weight should allow for increased Tg's and the retention of polymer pre-forms. In this report, the chlorination of the polycarbosilane polymer and the substitution reactions of polycarbosilane were examined with IR, 29Si and 13C NMR spectroscopy. In addition, the retention of polymer pre-forms were analyzed after UV exposure and inert atmosphere pyrolysis.


2021 ◽  
Vol 67 ◽  
pp. 145-155
Author(s):  
Hong Hong ◽  
Hu Jiyong ◽  
Kyoung-Sik Moon ◽  
Xiong Yan ◽  
Ching-ping Wong

2001 ◽  
Vol 34 (13) ◽  
pp. 4526-4533 ◽  
Author(s):  
Bor-Sen Chiou ◽  
Srinivasa R. Raghavan ◽  
Saad A. Khan

2013 ◽  
Vol 821-822 ◽  
pp. 925-928
Author(s):  
Lei Wang ◽  
Xiao Juan Lai ◽  
Shao Yun Ma

Waterborne UV curable polyurethane emulision containing C=C bond was prepared with self-emulsification. 3% water soluble photoinitiator was added to the polyurethane emulision, and polyurethane films was prepared by ultraviolet irradiation. The structure of the polyurethane emulision and films were confirmed by means of Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and thermogravimetric analysis. FTIR test result shows that cross linking and solidification reaction of C=C double bond happened after UV irradiation. When C=C content increases, the particle size of polyurethane emulision increases, crosslinking degree of films increases, water resistance and heat resistance have both been improved. When C=C content is 8.51%, gel content is more than 90% and the lowest water absorption can be 12.5%.


1952 ◽  
Vol 25 (2) ◽  
pp. 209-229 ◽  
Author(s):  
Shu Kambara ◽  
Kumakazu Ohkita

Abstract In this study much information about the method of distinguishing the state in which sulfur is combined in simple organic compounds consisting of carbon, hydrogen, and sulfur was obtained, and a new theory of vulcanization was postulated as a result of its application to vulcanized rubber. When activated sulfur reacts with rubber, it first adds to the double bonds, forming thioketones, which in turn, as a characteristic of these radicals, combine with each other, with the formation of a thioether structure. This transformation of thioketone into thioether takes place, not only during vulcanization, but also gradually after vulcanization. Because of the presence of thioketone, treatment of vulcanized rubber with hydrazine, forms a new network, that is, a ketoazine cross-linkage. Combined sulfur of the thioketone type was determined by an oxidizing agent, and as the difference of this value and total combined sulfur a method of determining bridge type of combined sulfur has been proposed. By this method, it was found that, even in ebonite, about one-third of the combined sulfur is the thioketone type, and that the bridge type is only about two-thirds of the total. The thioketone type of combined sulfur in soft vulcanized rubber is transformed gradually into the thioether type of cross-linkage when allowed to stand at room temperature, and this transformation is accelerated when the temperature is raised. In the case of hard rubber, this phenomenon is also observable, but the rate of this transformation is much slower compared to the former. This tendency is the same in the case of ketoazine cross-linking when rubber vulcanizates are treated with hydrazine. From these facts, it seems that the distribution of the thioketone radicals is not uniform, and the magnitude of the probability for collision of these radicals to form cross-linkages has a great influence on the properties of rubber after vulcanization. That is, the property of the vulcanizate is greatly affected by the fact whether the thioketone radicals in the vulcanizates are comparatively uniformly distributed or whether they exist in sectional groups or in colonies. The authors are the first to advance this postulate concerning the chemical structure of vulcanized rubber and its transformation. We believe that when the study is extended, using this postulation, problems such as aging and the differences in the properties of vulcanized rubber accelerated with various accelerators will become clear. Moreover, we believe that it will be of interest to physicists studying rubber elasticity to suggest this idea of colony of cross-linkages. We are now carrying on researches on these problems, and we shall report on them later.


2020 ◽  
Vol 146 ◽  
pp. 105699 ◽  
Author(s):  
Jingcheng Liu ◽  
Zhen Zhou ◽  
Xunzheng Su ◽  
Jiancheng Cao ◽  
Mengjia Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document