Study on the Construction of 3-Dimensional Image by Support Vector Machine

2014 ◽  
Vol 484-485 ◽  
pp. 907-911
Author(s):  
Jun Sun

The construction of object 3-dimensional image is the thinking base of machine learning, it is important to machine recognize the outside world. The current algorithms of object 3-dimensional image construction are mainly based on the least squares method (LSM) in linear or nonlinear models, all of them existed some defects and deficiencies. The paper introduced the construction principle of 3-dimensional image by support vector machine, then the algorithm and step was put forward, as well as the key code in the Matlab7.4.

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Lean Yu

A least squares fuzzy support vector machine (LS-FSVM) model that integrates advantages of fuzzy support vector machine (FSVM) and least squares method is proposed for credit risk evaluation. In the proposed LS-FSVM model, the purpose of incorporating the concepts of fuzzy sets is to add generalization capability and outlier insensitivity, while the least squares method is adopted to reduce the computational complexity. For illustrative purposes, a real-world credit risk dataset is used to test the effectiveness and robustness of the proposed LS-FSVM methodology.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Jingyi Mu ◽  
Fang Wu ◽  
Aihua Zhang

In the era of big data, many urgent issues to tackle in all walks of life all can be solved via big data technique. Compared with the Internet, economy, industry, and aerospace fields, the application of big data in the area of architecture is relatively few. In this paper, on the basis of the actual data, the values of Boston suburb houses are forecast by several machine learning methods. According to the predictions, the government and developers can make decisions about whether developing the real estate on corresponding regions or not. In this paper, support vector machine (SVM), least squares support vector machine (LSSVM), and partial least squares (PLS) methods are used to forecast the home values. And these algorithms are compared according to the predicted results. Experiment shows that although the data set exists serious nonlinearity, the experiment result also show SVM and LSSVM methods are superior to PLS on dealing with the problem of nonlinearity. The global optimal solution can be found and best forecasting effect can be achieved by SVM because of solving a quadratic programming problem. In this paper, the different computation efficiencies of the algorithms are compared according to the computing times of relevant algorithms.


Author(s):  
Haiyang Chen ◽  
Yu He

Machine learning (ML), as a branch of artificial intelligence, acquires the potential and meaningful rules from the mass of data via diverse algorithms. Owing to all research of traditional Chinese medicine (TCM) belonging to the digitalization of clinical records or experimental works, a massive and complex amount of data has become an inextricable part of the related studies. It is thus not surprising that ML approaches, as novel and efficient tools to mine the useful knowledge from data, have created inroads in a diversity of scopes of TCM over the past decade of years. However, by browsing lots of literature, we find that not all of the ML approaches perform well in the same field. Upon further consideration, we infer that the specificity may inhere between the ML approaches and their applied fields. This systematic review focuses its attention on the four categories of ML approaches and their eight application scopes in TCM. According to the function, ML approaches are classified into four categories, including classification, regression, clustering, and dimensionality reduction, and into 14 models as follows in more detail: support vector machine, least square-support vector machine, logistic regression, partial least squares regression, k-means clustering, hierarchical cluster analysis, artificial neural network, back propagation neural network, convolutional neural network, decision tree, random forest, principal component analysis, partial least squares-discriminant analysis, and orthogonal partial least squares-discriminant analysis. The eight common applied fields are divided into two parts: one for TCM, such as the diagnosis of diseases, the determination of syndromes, and the analysis of prescription, and the other for the related researches of Chinese herbal medicine, such as the quality control, the identification of geographic origins, the pharmacodynamic material basis, the medicinal properties, and the pharmacokinetics and pharmacodynamics. Additionally, this paper discusses the function and feature difference among ML approaches when they are applied to the corresponding fields via comparing their principles. The specificity of each approach to its applied fields has also been affirmed, whereby laying a foundation for subsequent studies applying ML approaches to TCM.


2021 ◽  
Vol 50 (2) ◽  
pp. 319-331
Author(s):  
Wenlu Ma ◽  
Han Liu

Least squares support vector machine (LSSVM) is a machine learning algorithm based on statistical theory. Itsadvantages include robustness and calculation simplicity, and it has good performance in the data processingof small samples. The LSSVM model lacks sparsity and is unable to handle large-scale data problem, this articleproposes an LSSVM method based on mixture kernel learning and sparse samples. This algorithm reduces theinitial training set to a sub-dataset using a sparse selection strategy. It converts the single kernel function in theLSSVM model into a mixed kernel function and optimizes its parameters. The reduced sub-dataset is used fortraining LSSVM. Finally, a group of datasets in the UCI Machine Learning Repository were used to verify theeffectiveness of the proposed algorithm, which is applied to real-world power load data to achieve better fittingand improve the prediction accuracy.


2020 ◽  
Vol 25 (1) ◽  
pp. 24-38
Author(s):  
Eka Patriya

Saham adalah instrumen pasar keuangan yang banyak dipilih oleh investor sebagai alternatif sumber keuangan, akan tetapi saham yang diperjual belikan di pasar keuangan sering mengalami fluktuasi harga (naik dan turun) yang tinggi. Para investor berpeluang tidak hanya mendapat keuntungan, tetapi juga dapat mengalami kerugian di masa mendatang. Salah satu indikator yang perlu diperhatikan oleh investor dalam berinvestasi saham adalah pergerakan Indeks Harga Saham Gabungan (IHSG). Tindakan dalam menganalisa IHSG merupakan hal yang penting dilakukan oleh investor dengan tujuan untuk menemukan suatu trend atau pola yang mungkin berulang dari pergerakan harga saham masa lalu, sehingga dapat digunakan untuk memprediksi pergerakan harga saham di masa mendatang. Salah satu metode yang dapat digunakan untuk memprediksi pergerakan harga saham secara akurat adalah machine learning. Pada penelitian ini dibuat sebuah model prediksi harga penutupan IHSG menggunakan algoritma Support Vector Regression (SVR) yang menghasilkan kemampuan prediksi dan generalisasi yang baik dengan nilai RMSE training dan testing sebesar 14.334 dan 20.281, serta MAPE training dan testing sebesar 0.211% dan 0.251%. Hasil penelitian ini diharapkan dapat membantu para investor dalam mengambil keputusan untuk menyusun strategi investasi saham.


2009 ◽  
Vol 35 (2) ◽  
pp. 214-219 ◽  
Author(s):  
Xue-Song WANG ◽  
Xi-Lan TIAN ◽  
Yu-Hu CHENG ◽  
Jian-Qiang YI

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Shengpu Li ◽  
Yize Sun

Ink transfer rate (ITR) is a reference index to measure the quality of 3D additive printing. In this study, an ink transfer rate prediction model is proposed by applying the least squares support vector machine (LSSVM). In addition, enhanced garden balsam optimization (EGBO) is used for selection and optimization of hyperparameters that are embedded in the LSSVM model. 102 sets of experimental sample data have been collected from the production line to train and test the hybrid prediction model. Experimental results show that the coefficient of determination (R2) for the introduced model is equal to 0.8476, the root-mean-square error (RMSE) is 6.6 × 10 (−3), and the mean absolute percentage error (MAPE) is 1.6502 × 10 (−3) for the ink transfer rate of 3D additive printing.


Sign in / Sign up

Export Citation Format

Share Document