Effect of NH4HCO3 Contents on the Microstructure of the Microwave Sintered Porous NiTi Alloys

2014 ◽  
Vol 496-500 ◽  
pp. 264-267
Author(s):  
Ji Lin Xu ◽  
Xiao Fei Jin ◽  
Jun Ming Luo ◽  
Ai Hui Liu

In this paper, the porous NiTi alloys were prepared by microwave sintering, and the effects of NH4HCO3contents on the microstructure of the porous NiTi alloys were studied. The microstructure of the porous NiTi alloys was investigated by optical microscopy, Archimedes drainage method, surface roughmeter and X-ray diffraction. The results showed that the porous NiTi alloys were mainly composed of NiTi, Ni3Ti, Ti2Ni and Ni, and the diffraction peaks of the non-equiatomic phases (Ni3Ti, Ti2Ni and Ni) increased with increasing the NH4HCO3contents. At the same time, the porosity, pore size and surface roughness of the porous NiTi alloys increased with the increase of the NH4HCO3contents.

2010 ◽  
Vol 428-429 ◽  
pp. 126-131
Author(s):  
Wei Zhong Lu ◽  
Chun Wei ◽  
Qui Shan Gao

Polymethylene bis(p-hydroxybenzoates) were prepared from methyl p-hydroxybenzoate and different diols by melted transesterification reaction. Three liquid crystalline polyesters were synthesized from terephthaloyl dichloride and polymethylene bis(p-hydroxybenzoates). Its structure, morphology and properties were characterized by Ubbelohde viscometer, Fourier transform infrared spectroscopy (FT-IR), Differential scanning calorimetry (DSC), polarized optical microscopy (POM) with a hot stage, and wide-angle X-ray diffraction (WAXD). Results indicated that the intrinsic viscosities were between 0.088 and 0.210 dL/g. Optical microscopy showed that the TLCP has a highly threaded liquid crystalline texture and a high birefringent schlieren texture character of nematic phase and has wider mesophase temperature ranges for all polyesters. DSC analysis were found that the melting point (Tm), isotropic temperature (Ti) of TLCPs decreased and the temperature range of the liquid crystalline phase became wider with increased number of methylene spacers in the polyester. The WAXD results showed that TLCPs owned two strong diffraction peaks at 2θ near 19° and 23°.


2019 ◽  
Author(s):  
KAIKAI MA ◽  
Peng Li ◽  
John Xin ◽  
Yongwei Chen ◽  
Zhijie Chen ◽  
...  

Creating crystalline porous materials with large pores is typically challenging due to undesired interpen-etration, staggered stacking, or weakened framework stability. Here, we report a pore size expansion strategy by self-recognizing π-π stacking interactions in a series of two-dimensional (2D) hydrogen–bonded organic frameworks (HOFs), HOF-10x (x=0,1,2), self-assembled from pyrene-based tectons with systematic elongation of π-conjugated molecular arms. This strategy successfully avoids interpene-tration or staggered stacking and expands the pore size of HOF materials to access mesoporous HOF-102, which features a surface area of ~ 2,500 m2/g and the largest pore volume (1.3 cm3/g) to date among all reported HOFs. More importantly, HOF-102 shows significantly enhanced thermal and chemical stability as evidenced by powder x-ray diffraction and N2 isotherms after treatments in chal-lenging conditions. Such stability enables the adsorption of dyes and cytochrome c from aqueous media by HOF-102 and affords a processible HOF-102/fiber composite for the efficient photochemical detox-ification of a mustard gas simulant.


2020 ◽  
Vol 86 (6) ◽  
pp. 29-35
Author(s):  
V. P. Sirotinkin ◽  
O. V. Baranov ◽  
A. Yu. Fedotov ◽  
S. M. Barinov

The results of studying the phase composition of advanced calcium phosphates Ca10(PO4)6(OH)2, β-Ca3(PO4)2, α-Ca3(PO4)2, CaHPO4 · 2H2O, Ca8(HPO4)2(PO4)4 · 5H2O using an x-ray diffractometer with a curved position-sensitive detector are presented. Optimal experimental conditions (angular positions of the x-ray tube and detector, size of the slits, exposure time) were determined with allowance for possible formation of the impurity phases during synthesis. The construction features of diffractometers with a position-sensitive detector affecting the profile characteristics of x-ray diffraction peaks are considered. The composition for calibration of the diffractometer (a mixture of sodium acetate and yttrium oxide) was determined. Theoretical x-ray diffraction patterns for corresponding calcium phosphates are constructed on the basis of the literature data. These x-ray diffraction patterns were used to determine the phase composition of the advanced calcium phosphates. The features of advanced calcium phosphates, which should be taken into account during the phase analysis, are indicated. The powder of high-temperature form of tricalcium phosphate strongly adsorbs water from the environment. A strong texture is observed on the x-ray diffraction spectra of dicalcium phosphate dihydrate. A rather specific x-ray diffraction pattern of octacalcium phosphate pentahydrate revealed the only one strong peak at small angles. In all cases, significant deviations are observed for the recorded angular positions and relative intensity of the diffraction peaks. The results of the study of experimentally obtained mixtures of calcium phosphate are presented. It is shown that the graphic comparison of experimental x-ray diffraction spectra and pre-recorded spectra of the reference calcium phosphates and possible impurity phases is the most effective method. In this case, there is no need for calibration. When using this method, the total time for analysis of one sample is no more than 10 min.


2004 ◽  
Vol 812 ◽  
Author(s):  
Nobutoshi Fujii ◽  
Kazuhiro Yamada ◽  
Yoshiaki Oku ◽  
Nobuhiro Hata ◽  
Yutaka Seino ◽  
...  

AbstractPeriodic 2-dimensional (2-D) hexagonal and the disordered pore structure silica films have been developed using nonionic surfactants as the templates. The pore structure was controlled by the static electrical interaction between the micelle of the surfactant and the silica oligomer. No X-ray diffraction peaks were observed for the disordered mesoporous silica films, while the pore diameters of 2.0-4.0 nm could be measured by small angle X-ray scattering spectroscopy. By comparing the properties of the 2-D hexagonal and the disordered porous silica films which have the same porosity, it is found that the disordered porous silica film has advantages in terms of the dielectric constant and Young's modulus as well as the hardness. The disordered porous silica film is more suitable for the interlayer dielectrics for ULSI.


2012 ◽  
Vol 472-475 ◽  
pp. 1451-1454
Author(s):  
Xue Hui Wang ◽  
Wu Tang ◽  
Ji Jun Yang

The porous Cu film was deposited on soft PVDF substrate by magnetron sputtering at different sputtering pressure. The microstructure and electrical properties of Cu films were investigated as a function of sputtering pressure by X-ray diffraction XRD and Hall effect method. The results show that the surface morphology of Cu film is porous, and the XRD revealed that there are Cu diffraction peaks with highly textured having a Cu-(220) or a mixture of Cu-(111) and Cu-(220) at sputtering pressure 0.5 Pa. The electrical properties are also severely influenced by sputtering pressure, the resistivity of the porous Cu film is much larger than that fabricated on Si substrate. Furthermore, the resistivity increases simultaneously with the increasing of Cu film surface aperture, but the resistivity of Cu film still decreases with the increasing grain size. It can be concluded that the crystal structure is still the most important factor for the porous Cu film resistivity.


Mineralogia ◽  
2013 ◽  
Vol 44 (1-2) ◽  
pp. 3-12 ◽  
Author(s):  
Kamaleldin M. Hassan ◽  
Julius Dekan

AbstractOlivine basalts from southern Egypt were studied by 57Fe Mössbauer spectroscopy at 297 and 77 K, and by optical microscopy and X-ray diffraction. The 57Fe Mössbauer spectra show three-magnetic sextets, three doublets of ferrous (Fe2+), and a weak ferric (Fe3+) doublet that is attributable to a nanophase oxide (npOx). The magnetic sextets relate to titanomagnetite and the Fe2+ doublets to olivine, pyroxene, and ulvöspinel. Variations in the hyperfine parameters of the various Fe components are attributed to changes in the local crystal chemistry. The intensity of oxidation (Fe3+/ΣFe) in the rocks varies from 20-27% with the oxidized iron largely residing in the titanomagnetite.


2008 ◽  
Vol 368-372 ◽  
pp. 238-240 ◽  
Author(s):  
Xi Tang Wang ◽  
Girish M. Kale

Microwave sintering behaviors of four different compositions of YSZ electrolyte materials were investigated. The samples were sintered in 2.45GHz microwave furnace. For comparison, conventional sintering was performed at 1821K.The densities of sintered samples showed considerable enhancement in the densification process under the influence of microwave fields. The samples with lower Y2O3 content are easy to sinter. The influence of the composition and sintering methods on the final phase composition and microstructure were investigated by X-ray diffraction and scanning electron microcopy. Finer and more uniform microstructures were observed in the microwave sintered samples comparing to the conventionally sintered samples.


2007 ◽  
Vol 43 (2) ◽  
pp. 141-150 ◽  
Author(s):  
G.P. Vassilev ◽  
K.I. Lilova ◽  
J.C. Gachon

Phase equilibria were studied in the system Ni-Sn-Bi. Special attention has been paid to the identification of the recently found ternary phase. For this purpose samples were synthesized using intimately mixed powders. After annealing and quenching, all alloys were analyzed by scanning electron microscope and by X-ray diffraction. The results give evidences about the existence of a ternary compound with approximate formula Ni6Sn2Bi to Ni7Sn2Bi. Overlapping of some neighboring diffraction peaks of this phase with NiBi and Ni3Sn_LT is the reason for the difficulties related to the X-ray diffraction identification of the ternary phase.


Sign in / Sign up

Export Citation Format

Share Document