Analysis on Seismic Performance of Corrugated Steel Web Continuous Rigid Frame Bridge

2014 ◽  
Vol 501-504 ◽  
pp. 1471-1476
Author(s):  
Yi Qiang Wang ◽  
Bing Bing Fan ◽  
Liang Li

Corrugated steel web continuous rigid frame bridge is a new form of bridge. Using the finite element analysis software Midas Civil to analyze dynamic characteristics of the corrugated steel web continuous rigid frame bridge in a method of subspace iron and the nonlinear dynamic time history analysis method is used to analyze the seismic performance of the bridge, then compared with the ordinary concrete web continuous rigid frame bridge. The results show that the natural frequency of the corrugated steel web continuous rigid frame bridge is smaller than that of the concrete web continuous rigid frame bridge, and the seismic performance of the corrugated steel web continuous rigid frame bridge is superior to that of concrete web continuous rigid frame bridge, the improvement of the seismic performance of piers is most significant.

2018 ◽  
Vol 175 ◽  
pp. 04037
Author(s):  
FENG Yongbing

Taking the three-span pre-stressed concrete continuous rigid frame bridge as an engineering example, MIDAS Civil was utilized to establish a spatial finite element model and the interaction between pile foundation and the soil was simulated by equivalent soil spring. In addition to analyzing shearing force, bending moment and stress of the primary beam's characteristic section under different loads, a response spectrum method and time history analysis were adopted to conduct seismic response analysis respectively. In this case, performance of the bridge could be comprehensively evaluated. Relevant analysis results indicate that internal force of the large-span pre-stressed concrete continuous rigid frame bridge is mainly induced by gravity and pre-stress of the structure; section stresses of the primary beam satisfy the corresponding specification and structural safety can be achieved in a state of operation. Moreover, computed results obtained by the response spectrum method is more conservative than those of the time history analysis. In terms of continuous rigid frame bridge, different seismic directions should be taken into consideration during structural seismic analysis at different construction stages.


2011 ◽  
Vol 243-249 ◽  
pp. 1876-1880
Author(s):  
Ying Wang ◽  
Jian Xin Liu ◽  
Chong Wang

A structure model of three-span continuous rigid frame bridge was constructed based on the finite element method. At first, the modal analysis was performed to get the natural frequencies and periods. The dynamic characteristics of the bridge structure were summarized, and some improvement measures are suggested to overcome the shortcoming for the bridge structure. Then, seismic response analysis was carried out based on the EL-Centro wave. The input excitations adopted the combination of vertical wave plus longitudinal wave, or vertical wave plus lateral wave. Based on the two excitation cases, some useful results were obtained, which include internal forces, displacements, accelerations time-history curves of the critical sections for the bridge structure. And some commentates about the time-history curves are given. At last, some helpful conclusions are drawn based on the calculation and analysis above. The calculation methods and results in this paper can provide some referenced information for the engineering design.


2013 ◽  
Vol 444-445 ◽  
pp. 1265-1271
Author(s):  
Jian Bin Xie ◽  
Deng Feng Hu ◽  
Miao Fu ◽  
Chang Chang Wu

The selected high-span continuous rigid frame bridge for studying is Mangjiedu Bridge in this paper. Based on the principle of structure dynamics and the method of seismic response analysis, the finite element model of the main bridge in Mangjiedu Bridge under Midas-civil was built according to the structural features, site conditions and seismic fortification intensity of the bridge. Then the characteristics of main bridge structure were studied using Lanzcos modal analysis method, and the seismic responses of main bridge are studied by earthquake response spectrum analysis and time history analysis respectively. The results show that the fundamental frequency of the main bridge is 0.1943Hz, and the transverse vibration mode shapes are most remarkable in the former 10 ordered types of vibration of main bridge. The main bridge is in the conditions of elastic range and does not failure under E1 earthquake. Both response spectrum analysis and time history analysis show that the largest displacement along the main bridge appears at the top of pier and the largest transverse displacement appears in the central position of main span. It also shows that the maximum shear and maximum moment occur at the bottom of main pier.


2015 ◽  
Vol 9 (1) ◽  
pp. 489-494
Author(s):  
Wu Tong ◽  
Sun Quansheng

Continuous rigid frame bridge is a common type of bridge in California, where is a seismically active areas. Main structural features of the bridge, including asymmetry, hinge structure, concretion of girder and piers affect the seismic response of the bridge significantly. In order to evaluate the safety of the bridge under earthquake, the nonlinear models of girder, limiting steels in hinge, abutment backfill, abutment bearing, pier are simulated in great detail, and a numerical dynamic overall model, composed of the above components, is made through OpenSees program. On the basis of nonlinear time history analysis with Northridge earthquake load, seismic damage of this kind of bridge is monitored. The research results acquire the accurate damage area of the bridge. Under earthquake, asymmetric continuous rigid frame bridge with curved girder tends to move to the external rim of curve. Asymmetry is detrimental to coinstantaneous vibration of frames, which can cause the large nonlinear damage of limiting steels in hinge. Due to large longitudinal relative seismic response between girder and abutment, the damage of abutment bearing and backfill could be severe. The area on the top and bottom of shorter piers in both sides of bridge is vulnerable because longitudinal steel bars in these areas are liable to yield under repeating shaking of earthquake.


2018 ◽  
Vol 13 (2) ◽  
pp. 146-155 ◽  
Author(s):  
Zhuoya Yuan ◽  
Pui-Lam Ng ◽  
Darius Bačinskas ◽  
Jinsheng Du

To consider the effect of non-uniform shrinkage of box girder sections on the long-term deformations of continuous rigid frame bridges, and to improve the prediction accuracy of analysis in the design phase, this paper proposes a new simulation technique for use with general-purpose finite element program. The non-uniform shrinkage effect of the box girder is transformed to an equivalent temperature gradient and then applied as external load onto the beam elements in the finite element analysis. Comparative analysis of the difference in deflections between uniform shrinkage and nonuniform shrinkage of the main girder was made for a vehicular bridge in reality using the proposed technique. The results indicate that the maximum deflection of box girder under the action of non-uniform shrinkage is much greater than that under the action of uniform shrinkage. The maximum downward deflection of the bridge girder caused by uniform shrinkage is 5.6 mm at 20 years after completion of bridge deck construction, whereas the maximum downward deflection caused by non-uniform shrinkage is 21.6 mm, which is 3.8 times larger. This study shows that the non-uniform shrinkage effect of the girder sections has a significant impact on the long-term deflection of continuous rigid frame bridge, and it can be accurately simulated by the proposed transformation technique.


2011 ◽  
Vol 368-373 ◽  
pp. 1105-1110
Author(s):  
Yun Jing Nie ◽  
Xu Yan ◽  
Tie Ying Li

In this paper, the influence of tie beams for piers is investigated on the dynamic characteristics and the seismic performance of a continuous rigid frame bridge with twin-legged piers. Modal analyses and the linear seismic response analyses are performed on a practical continuous rigid frame bridge with twin-legged piers with no tie beam, one tie beam and three tie beams of pier, using software Midas/civil. The findings indicate that installing tie beams of pier can increase the natural frequencies of this kind of bridge. Setting tie beams of pier is disadvantageous to the seismic performance of the bridge beam, but advantageous to improving the seismic performance of the twin-legged piers. The influence of tie beams of pier on the seismic performance on the whole structure is relevant to the pier height. These analytical results provide a reference for the seismic design and analysis of similar structures.


2011 ◽  
Vol 105-107 ◽  
pp. 818-822
Author(s):  
Xiao Fei Teng ◽  
Si Yang Chen ◽  
Bin Luo

To make a top local adding stories of “L” flat facade irregular frame structure with good resistance to twist and integrity, can better satisfy the requirements of local seismic fortification intensity,using metal damper to this after-adding-stories framework model for processing. Using SAP2000 finite element analysis software modeling and in its install metal damper dynamic time-history analysis before and after. Results show that the structure using metal consumption technology in consume earthquake input energy at the same time can enhance structure rigid and floor wrest resistant and strengthen the lateral stiffness integral structure seismic performance.


2013 ◽  
Vol 671-674 ◽  
pp. 1045-1050
Author(s):  
Xian Wu Hao ◽  
Ya Xun Yang

With the background of continuous rigid frame bridge,this paper considers the impact of the structural weight and the pre-stressed force in the construction phase,uses the ANSYS finite element analysis program to analyze the stress and strain of an continuous rigid frame bridge in the the largest cantilever state, focuses on different effects of the different radius of curvature and pier height.Through the analysis constructs the control mentality and the corresponding design proposal for the continuous rigid frame bridge had been provided.


2011 ◽  
Vol 94-96 ◽  
pp. 983-988
Author(s):  
Xing Ye Chen ◽  
Xue Song Tang

Abstract. Based on the concept of energy design, pushover analysis and elastoplastic dynamic response have been made under the earthquake. It is seen that the loading mode plays an important role in the pushover analysis. The loads in the pushover analysis distribute along the height of the structure that should reflect the distribution of the inertial forces under the earthquake so that the calculated displacements have a good accuracy in contrast to the real displacements. Only in such a way, the result by pushover analysis method is credible. On the other hand, it is found that the high order vibration modes can not be neglected in the pushover analysis for a continuous rigid frame bridges with long span and high piers. However, the bridge design codes have not told how to consider the effect of high order vibration modes. A simplified loading mode is then proposed in this work. A contribution ratio of vibration mode is defined to indicate whether the vibration mode should be considered or not in the pushover analysis. The proposed loading mode is applied to a real continuous rigid frame bridge with large span and high piers. The dynamic response and aseismatic property are evaluated and discussed. In addition, the results by pushover analysis are compared to the results by non-linear time-history analysis. The result shows that the high order vibrational modes indeed have a pronounced influence on the result. The proposed loading mode can give a reasonable result.


2014 ◽  
Vol 587-589 ◽  
pp. 1462-1467
Author(s):  
Jin Yu Liu ◽  
Yang Zou ◽  
Peng Peng Zheng

Taking Guizhou Hezhang Bridge as the engineering background, this paper used Midas/Civil FEM platform to study the pre-stress loss and deformation of main girder in bridge construction stage and completion stage on the basis of concrete creep and shrinkage formulas provided by “Highway reinforced concrete and pre-stressed concrete bridge design code (JTG D62-2004)” and the US bridge standard – AASHTO LRFD – published in 2005. The results showed that the pre-stress pipeline friction losses calculated according to the two standards are basically the same. The loss of the anchor deformation, elastic compression and tendon relaxation obtained by AASHTO LRFD is slightly greater than that obtained by JTG D62-2004. However, due to the different computing models, both pre-stress loss and the main beam deflection caused by concrete creep and shrinkage obtained by AASHTO LRFD are larger than that by JTG D60-2004.


Sign in / Sign up

Export Citation Format

Share Document