PFC’s Application on the Dynamic Response Analysis of High Speed Railway Ballastless Subgrade

2014 ◽  
Vol 505-506 ◽  
pp. 9-14
Author(s):  
Li Jing Wen He ◽  
Quan Mei Gong

The biaxial test on ballastless track subgrade material of surface layer and bottom layer of subgrade was established using the particle flow code(PFC). Based on the micro parameter gotten from the biaxial test, a two-dimensional discrete element model of slab Ballastless Track subgrade is modeled. The dynamic response under dynamic load was calculated. A comparison of simulation results and the field measured data shows goodness of fit which provides a new way of simulation on dynamic response of high speed railway subgrade.

2012 ◽  
Vol 531-532 ◽  
pp. 163-167
Author(s):  
Jun Fu ◽  
Yu Qin ◽  
You Yun Yu ◽  
Meng Jun Ye ◽  
Lian Xin Li

As an important cushion layer, CA mortar ballastless track is crucial to the durability, safety of high-speed railway and the high-speed railway is influenced by the external environment. The regulation of temperature field evolvement of ballastless track is analyzed in this paper through a two-dimensional, transient finite element model built by ANSYS. The results show that the temperature of structure section caused by solar radiation and circumstances temperature is decreasing along depth in sunlight, and the internal temperature of structure is higher than the surface temperature at night. The integral temperature field of structure reaches the maximum at 1:00 p.m. and the vertical difference of the temperature inside the structure is also the largest, causing the most obvious temperature stress, which provides theoretical data for systematic research on ballastless track of high-speed railway.


Author(s):  
De Zhang ◽  
Junhua Xiao ◽  
Xiao Zhang

The deformation of a bridge foundation (i.e. pier) for a ballastless track of a high-speed railway may cause additional irregularities within the track, thereby affecting train operation. By using a unit slab ballastless track bridge system as the research object, this study built a finite element model and a train–track dynamic interaction model. The additional rail deformation caused by the vertical or lateral deformation of a bridge pier was calculated by the finite element model, and then the effects on train operation due to the additional rail deformation were analyzed by the train–track dynamic model. It was found that the lateral deformation of a single pier should be of the most concern for the management and control of a high-speed railway. Specifically, when a pier suffered settlement and lateral deformation concurrently, the evaluation indices of train operation were primarily affected by the magnitude of the lateral deformation, and were only slightly affected by the settlement.


2011 ◽  
Vol 243-249 ◽  
pp. 3844-3847 ◽  
Author(s):  
Ling Kun Chen ◽  
Li Zhong Jiang ◽  
Zhi Ping Zeng ◽  
Bo Fu Luo

The responses of high-speed railway bridge subjected to seismic load were investigated by numerical simulation, the whole finite element model of the multi-span bridge simply supported bridge was set up, and natural vibration properties of structure were analyzed. According to theory of elasticity and elastic-plasticity, parametric study was conducted to assess the influences of different speeds, strong motion record, pier height and earthquake acceleration on the seismic capability of high-speed bridge subjected to different strength of the earthquake, the finite element soft ware and moment-curvature program were employed to calculate the earthquake responses of bridge. The calculation results show that, with the increase of train speed, pier height and earthquake intensity, the earthquake responses of bridge are increase in general, and the bottom of piers step into states of elastic-plasticity under high-level earthquake, elastic-plastic deformation is larger, the stirrup encryption measures should be carried out.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Boyang An ◽  
Ping Wang ◽  
Jieling Xiao ◽  
Jingmang Xu ◽  
Rong Chen

As a main part of continuously welded rail track, rail weld widely exists in high-speed railway. However, short-wave irregularities can easily initiate and develop in rail weld due to the limitation of welding technology and thus rail weld has been a main high-frequency excitation and is responsible for deterioration of track components. This work reports a 3D finite element model of wheel-rail rolling contact which can simulate dynamic wheel-rail interaction at arbitrary contact geometry up to 400 km/h. This model is employed to investigate dynamic response of wheel-rail interaction at theoretical and measured rail weld, including wheel-rail force and axle-box acceleration. These simulation results, combined with Quality Index (QI) method, are used to develop a quantitative expression, which can be easily applied for evaluating rail weld deterioration based on measured rail profiles and axle-box acceleration.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2876
Author(s):  
Yingying Zhang ◽  
Lingyu Zhou ◽  
Akim D. Mahunon ◽  
Guangchao Zhang ◽  
Xiusheng Peng ◽  
...  

The mechanical performance of China Railway Track System type II (CRTS II) ballastless track suitable for High-Speed Railway (HSR) bridges is investigated in this project by testing a one-quarter-scaled three-span specimen under thermal loading. Stress analysis was performed both experimentally and numerically, via finite-element modeling in the latter case. The results showed that strains in the track slab, in the cement-emulsified asphalt (CA) mortar and in the track bed, increased nonlinearly with the temperature increase. In the longitudinal direction, the zero-displacement section between the track slab and the track bed was close to the 1/8L section of the beam, while the zero-displacement section between the track slab and the box girder bridge was close to the 3/8L section. The maximum values of the relative vertical displacement between the track bed and the bridge structure occurred in the section at three-quarters of the span. Numerical analysis showed that the lower the temperature, the larger the tensile stresses occurring in the different layers of the track structure, whereas the higher the temperature, the higher the relative displacement between the track system and the box girder bridge. Consequently, quantifying the stresses in the various components of the track structure resulting from sudden temperature drops and evaluating the relative displacements between the rails and the track bed resulting from high-temperature are helpful in the design of ballastless track structures for high-speed railway lines.


Sign in / Sign up

Export Citation Format

Share Document