Study on the β1→α+β2 Transformation Kinetics of Ti-6Al-4V Alloy by DSC

2014 ◽  
Vol 508 ◽  
pp. 110-113
Author(s):  
Rong Hua Zhang ◽  
Biao Wu ◽  
Xiao Ping Zheng

The temperature and duration of β1→α+β2 transformation of Ti-6Al-4V alloy in cooling process were measured by differential scanning calorimetry, and transformation activation energy and Avrami exponent of β1→α+β2 were also calculated. The results show that the cooling rate is in the range of 在5~20°C/min, the transformation temperature and the transformation duration β1→α+β2 transformation of Ti-6Al-4V alloy decreased with the increasing cooling rate, its transformation activation energy decreased with the increasing phase transformation volume fraction, and Avrami exponent was between 1 and 2 at 660°C.

2012 ◽  
Vol 562-564 ◽  
pp. 200-203
Author(s):  
Mai Shun Qi ◽  
Ya Li Li ◽  
Lai Lei Wu ◽  
Jian Hua Liu ◽  
Rui Jun Zhang

The transformation temperature and time of α+γ2 to ß in a Cu-Al alloy after cryogenic treatment during heating were measured by DSC, and the transformation activation energy of α+γ2 to ß was also calculated. It is indicated that the Cu-Al alloy with heating rate of 10°C/min, the phase transformation onset and ending temperature is 561.75°C and 582.88°C, respectively, and the phase transformation time is126.6S. The phase transformation activation energy decreases with the increasing volume fraction of their phase transformation.


Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 48
Author(s):  
Wenjun Song ◽  
Min Lei ◽  
Mingpan Wan ◽  
Chaowen Huang

In this study, the phase transformation behaviour of the carburised layer and the matrix of 23CrNi3Mo steel was comparatively investigated by constructing continuous cooling transformation (CCT) diagram, determining the volume fraction of retained austenite (RA) and plotting dilatometric curves. The results indicated that Austenite formation start temperature (Ac1) and Austenite formation finish temperature (Ac3) of the carburised layer decreased compared to the matrix, and the critical cooling rate (0.05 °C/s) of martensite transformation is significantly lower than that (0.8 °C/s) of the matrix. The main products of phase transformation in both the carburised layer and the matrix were martensite and bainite microstructures. Moreover, an increase in carbon content resulted in the formation of lamellar martensite in the carburised layer, whereas the martensite in the matrix was still lath. Furthermore, the volume fraction of RA in the carburised layer was higher than that in the matrix. Moreover, the bainite transformation kinetics of the 23CrNi3Mo steel matrix during the continuous cooling process indicated that the mian mechanism of bainite transformation of the 23CrNi3Mo steel matrix is two-dimensional growth and one-dimensional growth.


2014 ◽  
Vol 988 ◽  
pp. 31-35
Author(s):  
Jia Le Song ◽  
Chan Chan Li ◽  
Zhi Mi Zhou ◽  
Chao Qiang Ye ◽  
Wei Guang Li

Curing kinetics of MEP-15/593 system and MEP-15/593/660 system is studied by means of differential scanning calorimetry (DSC). Curing kinetic parameters are evaluated and the relationship between diluent 660 and the curing properties is investigated. The results show that the diluent 660 can not only reduce viscosity and activation energy, but also improve the degree of cure and conversion ratio.


Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1015
Author(s):  
Jun Wang ◽  
Chen Wei ◽  
Haoxue Yang ◽  
Tong Guo ◽  
Tingting Xu ◽  
...  

The phase transformation kinetics of a face-centered-cubic (FCC) Al0.25CoCrFeNi high-entropy alloy during isochronal heating is investigated by thermal dilation experiment. The phase transformed volume fraction is determined from the thermal expansion curve, and results show that the phase transition is controlled by diffusion controlled nucleation-growth mechanism. The kinetic parameters, activation energy and kinetic exponent are determined based on Kissinger–Akahira–Sunose (KAS) and Johnson–Mehl–Avrami (JMA) method, respectively. The activation energy and kinetic exponent determined are almost constant, indicating a stable and slow speed of phase transition in the FCC Al0.25CoCrFeNi high-entropy alloy. During the main transformation process, the kinetic exponent shows that the phase transition is diffusion controlled process without nucleation during the transformation.


2010 ◽  
Vol 2010 ◽  
pp. 1-5 ◽  
Author(s):  
H. Mehranpour ◽  
M. Askari ◽  
M. Sasani Ghamsari ◽  
H. Farzalibeik

Titanium dioxide nanopowders were synthesized by the diffusion controlled sol-gel process (LaMer model) and characterized by DTA-TG, XRD, and SEM. The preparedTiO2nanoparticles have uniform size and morphology, and the phase transformation kinetics of obtained material was studied by interpretation of the X-ray diffraction patterns peaks on the base of Avrami equation. The stating point of anatase-rutile phase transformation temperature in the prepared nanoparticles was found between 100 and200°C. A decreasing trend on the intensity of X-ray peaks of anatase phase was observed up to600°Cwhen the presence of the rutile phase became predominant. Results indicated that the transition kinetics of the diffusion controlled prepared nanoparticles was begun at low temperature, and it can be concluded that the nucleation and growth sites in these particles were more than other. However, it has been found that the nucleation activation energy of rutile phase was 20 kj/mol, and it is the lowest reported activation energy.


2011 ◽  
Vol 688 ◽  
pp. 180-185
Author(s):  
Yu Zhang ◽  
Wei Lu ◽  
Biao Yan ◽  
Yu Xin Wang ◽  
Ying Yang

The nanocrystallization kinetics of the Fe81Si3.5B13.5C2amorphous alloy was investigated by differential scanning calorimetry (DSC). The apparent activation energy Ea, as well as the nucleation and growth kinetic parameters has been calculated by Kissinger and Ozawa methods. The changeable activation energy Eawith crystalline fraction α was obtained by the expended Friedman method without assuming the kinetic model function, and the average value of Eawas 364±20 kJ/mol. It was shown that the crystallization mechanism of initial stage (0<α<0.7) of the transformation was bulk crystallization with two and three dimensional nucleation graining growth which was controlled by diffusion. For the middle stage (0.7<α<0.9), the crystallization mechanism is surface crystallization with one dimensional nucleation graining growth at a near-zero nucleation rate. In the final stage(α>0.9),the local Avrami exponents rose anomalously from 1.4 to about 2.0.


2004 ◽  
Vol 19 (10) ◽  
pp. 2929-2937 ◽  
Author(s):  
Chain-Ming Lee ◽  
Yeong-Iuan Lin ◽  
Tsung-Shune Chin

Nonisothermal crystallization kinetics of amorphous chalcogenide Ga–Sb–Te films with compositions along the pseudo-binary tie-lines connecting Sb7Te3−GaSb and Sb2Te3–GaSb of the ternary phase diagram were investigated by means of differential scanning calorimetry. Powder samples were prepared firstly by film deposition using a co-sputtering method; the films were then stripped from the substrate. The activation energy (Ea) and rate factor (Ko) were evaluated from the heating rate dependency of the crystallization temperature using the Kissinger method. The kinetic exponent (n) was deduced from the exothermic peak integrals using the Ozawa method. The crystallization temperature (Tx = 181 to 327 °C) and activation energy (Ea= 2.8 to 6.5 eV) increased monotonically with increasing GaSb content and reached a maximum value in compositions located at the vicinity of GaSb. The kinetic exponent is temperature dependent and shows higher values in the SbTe-rich compositions. Promising media compositions worthy of further studies were identified through the determined kinetics parameters.


2014 ◽  
Vol 971-973 ◽  
pp. 103-106
Author(s):  
Xiao Hua Gu ◽  
Peng Zeng ◽  
Xi Wei Zhang ◽  
Xue Song

Abstract.In this paper, the nonisothermal crystallization kinetics was investigated by differential scanning calorimetry for the poly(m-xylylene adipamide) (MXD6) which were prepared by polymerization in reactor. The Avrami theory modified by Jeziorny and Z.S. Mo equation were used to describe the nonisothermal crystallization kinetics. The analysis based on the Avrami theory modified by Jeziorny shows that the Avrami exponent n of MXD6 ranges from 2.3 to 3.3, Moreover, both Avrami exponent (n) were around 3.0, which probably suggests a thermal nucleation and a three-dimensional crystal growth. The good linearity of the plots indicates the successful application of Z.S. Mo method in this case.


2017 ◽  
Vol 55 (4) ◽  
pp. 443 ◽  
Author(s):  
Giang Truong Nguyen ◽  
Kien Trung Tran ◽  
Thiem Van Pham ◽  
Hoa Thi Nguyen

The kinetics of lignin methylsulfonation were studied in solution by using differential scanning calorimetry (DSC) techniques under an isothermal program, at 55, 65, 75 and 85°C, respectively. It was found that activation energy, Eα =  41.26 kJ/mol, and preexponential factor A was 1.85×103 s-1.


2011 ◽  
Vol 233-235 ◽  
pp. 1834-1837
Author(s):  
Zeng Ping Zhang ◽  
Jian Zhong Pei ◽  
Shuan Fa Chen ◽  
Hong Zhao Du ◽  
Yong Wen

Polyhedral oligomeric silsesquioxane (POSS) can be incorporated into polymers to obtain organic/inorganic hybrid materials. Octaepoxysilsesquioxane (E-POSS) with eight reactive epoxy groups per molecule is an important kind of POSS. E-POSS was cured with 4,4'-diaminodiphenylsulfone diamine (DDS) in this study. The curing kinetics of the E-POSS/DDS system was studied by using differential scanning calorimetry (DSC). Kinssinger and Flynn-Wall-Ozawa methods were used to obtain the activation energy and pre-exponential factor of the curing reaction.


Sign in / Sign up

Export Citation Format

Share Document