Effect of Calcinations on Morphology of Electrospun Copper and Copper Oxide Nanofibers

2011 ◽  
Vol 52-54 ◽  
pp. 1884-1889 ◽  
Author(s):  
Dariush Jafar Khadem ◽  
Zahira Yaakob ◽  
Samaneh Shahgaldi ◽  
Wan Ramli Wan Daud ◽  
Edy Herianto Majlan

Metal and Metal oxide nanofibers have different potential to play an essential role in a series of application, among them copper and copper oxide nanostructures is a promising semiconductor material with potential applications in many field. In this paper, electrospinning method via sol-gel was used to fabricate copper and copper oxide nanofibers. Synthesize of copper and copper oxide nanofibers and also effect of calcinations temperature on morphology investigated by thermal gravimetric analysis, scanning electron microscopy (SEM), Transmission electron microscopy, x-ray diffraction(XRD), Fourier transform infrared spectroscopy (FTIR) and Brunauer Emmett and Teller (BET).

2011 ◽  
Vol 471-472 ◽  
pp. 792-797
Author(s):  
Dariush Jafar Khadem ◽  
Zahira Yaakob ◽  
Samaneh Shahgaldi ◽  
Wan Ramli Wan Daud ◽  
Edy Herianto Majlan

One-dimensional nanostructures, like nanofibers, nanobelts, nanotubes, nanorods have been regarded as a new class of nanomaterials that have been attracted as the most promising building blocks for verity applications in the last few years. As one type of important structures with intensive research efforts have been devoted to the production and investigation of the metal oxides. Metal oxide nanofibers have different potential to play an essential role in a series of application such as optics, nanoelectronics, catalysts, sensors, storage, optoelectonics, and full cell. Copper oxide nanostructures is a promising semiconductor material with potential applications in photochemical, electrochemical, electrochromic especially in water splitting, catalysts, and fabrication of photovoltaic devices. In this paper electrospinning method via sol-gel was used to fabricate copper oxide nanofibers. Copper oxide nanofibers with different morphology were synthesized by different calcinations temperature. In this paper, effective parameters such as voltage, concentration of precursor and different calcinations temperature were characterized by thermal gravimetric analysis, scanning electron microscopy (SEM), Transmission electron microscopy, x-ray diffraction(XRD), Fourier transform infrared spectroscopy (FTIR) and Brunauer Emmett and Teller (BET).


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Rijing Wang ◽  
Xiaohong Wang ◽  
Xiaoguang Xi ◽  
Ruanbing Hu ◽  
Guohua Jiang

A simple sol-gel method was used to prepare magnetic Fe3O4/SiO2/TiO2composites with core-shell structure. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM) have been applied to investigate the structure and morphology of the resultant composites. The obtained composites showed excellent magnetism and higher photodegradation ability than pure TiO2. The photocatalytic mechanism was also discussed. The magnetic composites should be extended to various potential applications, such as photodegradation, catalysis, separation, and purification processes.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1712
Author(s):  
Appusamy Muthukrishnaraj ◽  
Salma Ahmed Al-Zahrani ◽  
Ahmed Al Otaibi ◽  
Semmedu Selvaraj Kalaivani ◽  
Ayyar Manikandan ◽  
...  

Towards the utilization of Cu2O nanomaterial for the degradation of industrial dye pollutants such as methylene blue and methyl orange, the graphene-incorporated Cu2O nanocomposites (GCC) were developed via a precipitation method. Using Hummers method, the grapheme oxide (GO) was initially synthesized. The varying weight percentages (1–4 wt %) of GO was incorporated along with the precipitation of Cu2O catalyst. Various characterization techniques such as Fourier-transform infra-red (FT-IR), X-ray diffraction (XRD), UV–visible diffused reflectance (UV-DRS), Raman spectroscopy, thermo gravimetric analysis (TGA), energy-dispersive X-ray analysis (EDX), and electro chemical impedance (EIS) were followed for characterization. The cabbage-like morphology of the developed Cu2O and its composites were ascertained from field-emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HR-TEM). In addition, the growth mechanism was also proposed. The results infer that 2 wt % GO-incorporated Cu2O composites shows the highest value of degradation efficiency (97.9% and 96.1%) for MB and MO at 160 and 220 min, respectively. Further, its catalytic performance over visible region (red shift) was also enhanced to an appreciable extent, when compared with that of other samples.


2017 ◽  
Vol 50 ◽  
pp. 18-31 ◽  
Author(s):  
Rudzani Sigwadi ◽  
Simon Dhlamini ◽  
Touhami Mokrani ◽  
Patrick Nonjola

The paper presents the synthesis and investigation of zirconium oxide (ZrO2) nanoparticles that were synthesised by precipitation method with the effects of the temperatures of reaction on the particles size, morphology, crystallite sizes and stability at high temperature. The reaction temperature effect on the particle size, morphology, crystallite sizes and stabilized a higher temperature (tetragonal and cubic) phases was studied. Thermal decomposition, band structure and functional groups were analyzed by Brunauer-Emmett-Teller (BET), Scanning Electron Microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD), Thermo-gravimetric analysis (TGA) and Fourier transform infrared (FT-IR). The crystal structure was determined using X-ray diffraction. The morphology and the particle size were studied using (SEM) and (TEM). The shaped particles were confirmed through the SEM analysis. The transmission electron microscopic analysis confirmed the formation of the nanoparticles with the particle size. The FT-IR spectra showed the strong presence of ZrO2 nanoparticles.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Yan Ye ◽  
Da Yin ◽  
Bin Wang ◽  
Qingwen Zhang

We report the synthesis of three-dimensional Fe3O4/graphene aerogels (GAs) and their application for the removal of arsenic (As) ions from water. The morphology and properties of Fe3O4/GAs have been characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and superconducting quantum inference device. The 3D nanostructure shows that iron oxide nanoparticles are decorated on graphene with an interconnected network structure. It is found that Fe3O4/GAs own a capacity of As(V) ions adsorption up to 40.048 mg/g due to their remarkable 3D structure and existence of magnetic Fe3O4nanoparticles for separation. The adsorption isotherm matches well with the Langmuir model and kinetic analysis suggests that the adsorption process is pseudo-second-ordered. In addition to the excellent adsorption capability, Fe3O4/GAs can be easily and effectively separated from water, indicating potential applications in water treatment.


2013 ◽  
Vol 320 ◽  
pp. 483-487 ◽  
Author(s):  
Ming Li ◽  
Deng Bing Li ◽  
Jing Pan ◽  
Guang Hai Li

W-doped VO2 (B) nanoneedles were successfully synthesized by solgel combing with hydrothermal treatment, in which the polyethylene glycol (PEG) was used as both surfactant and reducing. The metastable VO2 (B) was completely transformed to thermochromic VO2 (M) after annealing at high purity N2 atmosphere. The DSC results exhibit a strong crystallographic transition, and the phase transition temperature of VO2 (M) can be reduced to about 38 °C by W-doping. Field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HR-TEM) were used to characterize the morphology and crystalline structure of the samples. The variable-temperature infrared transmittance spectra of VO2 (M) demonstrate their potential applications in energy saving field.


1989 ◽  
Vol 169 ◽  
Author(s):  
Rollin E. Lakis ◽  
Sidney R. Butler

AbstractY1Ba2Cu3O7 has been prepared by the evaporative decomposition of solutions method. Nitrate and mixed anion solutions were atomized and decomposed at temperatures ranging from 300°C to 950°C. The resulting materials have been characterized using x-ray powder diffraction, Thermal Gravimetric Analysis (TGA), particle size analysis, Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM). The powder consists of 0.3 micron agglomerated hollow spheres with a primary particle size of 0.06 micron. TGA and x-ray diffraction indicate the presence of barium nitrate and barium carbonate due to incomplete decomposition and/or product contamination by the process environment.


2018 ◽  
Vol 281 ◽  
pp. 859-864
Author(s):  
Yan Xing ◽  
Meng Fei Zhang ◽  
Tian Jun Li ◽  
Wei Pan

La2NiO4+σ nanofibers exhibiting typical Ruddlesden–Popper structure (K2NiO4) were fabricated by a facile electrospinning method. X-ray diffraction, scanning electron microscopy and transmission electron microscopy were used to analyze the structure, morphology and crystal process of the La2NiO4+σ nanofibers. For electrical properties measurement, uniaxially aligned nanofibers were directly collected and assembled into electrode. In our research, La2NiO4+σ phase forms above 873K with no impurity phase emerges during the thermal treatments. The nanofibers are smooth and uniform throughout the entire length and the grain is growing as calcination temperature increases. Furthmore, the La2NiO4+σ nanofibers own high mixed conductivity at 773K, laying good foundation for intermediate temperature solid oxide fuel cells application.


1997 ◽  
Vol 12 (6) ◽  
pp. 1441-1444 ◽  
Author(s):  
L. Armelao ◽  
A. Armigliato ◽  
R. Bozio ◽  
P. Colombo

The microstructure of Fe2O3 sol-gel thin films, obtained from Fe(OCH2CH3)3, was investigated by x-ray diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy. Samples were nanocrystalline from 400 °C to 1000 °C, and the crystallized phase was haematite. In the coatings, the α–Fe2O3 clusters were dispersed as single particles in a network of amorphous ferric oxide.


Sign in / Sign up

Export Citation Format

Share Document