SIWPSO-Based Controller Design for AUV

2014 ◽  
Vol 525 ◽  
pp. 736-740
Author(s):  
Jau Woei Perng ◽  
Yi Shyang Huang ◽  
Shiang Shiuan Huang ◽  
Guan Yan Chen ◽  
Chin Yin Chen ◽  
...  

A strategy is proposed for a control system with a linearized autonomous underwater vehicle (AUV) dynamic model. The proposed approach combines the particle swarm optimization (PSO) and proportional-integral-derivative (PID) controller to adjust the parameters of the linearized dynamic model. The linear and nonlinear model are both considered in our work. The proposed techniques is verified by using the simulation results to the model of AUV.

2012 ◽  
Vol 157-158 ◽  
pp. 88-93 ◽  
Author(s):  
Guang Hui Chang ◽  
Jie Chang Wu ◽  
Chao Jie Zhang

In this paper, an intelligent controller of PM DC Motor drive is designed using particle swarm optimization (PSO) method for tuning the optimal proportional-integral-derivative (PID) controller parameters. The proposed approach has superior feature, including easy implementation, stable convergence characteristics and very good computational performances efficiency.To show the validity of the PID-PSO controller, a DC motor position control case is considered and some simulation results are shown. The DC Motor Scheduling PID-PSO controller is modeled in MATLAB environment.. It can be easily seen from the simulation results that the proposed method will have better performance than those presented in other studies.


2013 ◽  
Vol 376 ◽  
pp. 349-353
Author(s):  
Yi Cheng Huang ◽  
Shu Ting Li ◽  
Kuan Heng Peng

This paper utilized the Improved Particle Swarm Optimization (IPSO) technique for adjusting the gains of PID and the bandwidth of zero-phase Butterworth Filter of an Iterative Learning Controller (ILC) for precision motion. Simulation results show that IPSO-ILC-PID controller without adaptive bandwidth filter tuning have the chance of producing high frequencies in the error signals when the filter bandwidth is fixed for every repetition. However the learnable and unlearnable error signals should be separated for bettering control process. Thus the adaptive bandwidth of a zero phase filter in ILC-PID controller with IPSO tuning is applied to one single motion axis of a CNC table machine. Simulation results show that the developed controller can cancel the errors efficiently as repetition goes. The frequency response of the error signals is analyzed by the empirical mode decomposition (EMD) and the Hilbert-Huang Transform (HHT) method. Errors are reduced and validated by ILC with adaptive bandwidth filtering design.


2014 ◽  
Vol 7 (3) ◽  
pp. 65-79
Author(s):  
Ibrahem S. Fatah

In this paper, a Proportional-Integral-Derivative (PID) controller of DC motor is designed by using particle swarm optimization (PSO) strategy for formative optimal PID controller tuning parameters. The proposed approach has superior feature, including easy implementation, stable convergence characteristics and very good computational performances efficiency. The DC Motor Scheduling PID-PSO controller is modeled in MATLAB environment. Comparing with conventional PID controller using Genetic Algorithm, the planned method is more proficient in improving the speed loop response stability, the steady state error is reduced, the rising time is perfected and the change of the required input do not affect the performances of driving motor with no overtaking.


2019 ◽  
Vol 52 (21) ◽  
pp. 315-322 ◽  
Author(s):  
Hui Sheng Lim ◽  
Shuangshuang Fan ◽  
Christopher K.H. Chin ◽  
Shuhong Chai ◽  
Neil Bose ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document