The Research of Lean Combustion Characteristic of Compound Injection System of Direct Injection Engine

2014 ◽  
Vol 532 ◽  
pp. 362-366 ◽  
Author(s):  
Jiang Feng Mou ◽  
Rui Qing Chen ◽  
Yi Wei Lu

This paper studies the lean burn limit characteristic of the compound injection system of the direct-injection gasoline engine. The low pressure nozzle on the intake manifold can achieve quality homogeneous lean mixture, and the direct injection in the cylinder can realized the dense mixture gas near the spark plug. By adjusting the two injection timing and injection quantity, and a strong intake tumble flow with special shaped combustion chamber, it can produces the reverse tumble to form different hierarchical levels of mixed gas in the cylinder. Experimental results show: the compound combustion system to the original direct-injection engine lean burn limit raise 1.8-2.5 AFR unit.

2011 ◽  
Vol 130-134 ◽  
pp. 796-799
Author(s):  
Ming Ming Wu ◽  
Yan Xiang Yang ◽  
Da Guang Xi ◽  
Ping Zhang ◽  
Zhong Guo Jin

This paper presents the feasibility of semi-direct injection on a 50cm3, two-stroke motorcycle gasoline engine, which is applied FAI semi-direct injection fuel system. The structure and fuel injection system is improved based on the original carburetor engine and the FAI injector is easily installed. The results of laboratory and drive test show that, compared with the original carburetor fuel system, through optimization calibration of fuel injection timing and injection quantity can improve power performance and fuel economy.


Author(s):  
Jie Li ◽  
Changwen Liu ◽  
Rui Kang ◽  
Lei Zhou ◽  
Haiqiao Wei

To utilize ethanol fuel in spark ignition engines more efficiently and flexibly, a new ethanol/gasoline dual-direct injection concept in gasoline engine is proposed. Therefore, based on the dual-fuel dual-direct injection system, the effects of different injection timings and two injector positions on the characteristics of combustion were studied comprehensively, and the effects of different octane numbers and temperature stratifications on knock and combustion were explored. The results show that as for Position A (ethanol injecting toward spark plug), with the delay of injection timing, knock tendency and its intensity increase initially and then decrease due to the comprehensive effect of ethanol evaporation and fuel stratification; on the contrary, for Position B (ethanol injecting toward end-gas region), retarding the injection timing of ethanol can effectively reduce the knock propensity. As for the engine performance, a dual-direct injection performs best, especially the retarded injection timing of ethanol for Position A. It can be found that with the delay of the fuel injection timing, the torque first increases and then decreases. The brake-specific fuel consumption decreases initially and then increases at maximum brake torque spark timing.


2012 ◽  
Vol 165 ◽  
pp. 31-37 ◽  
Author(s):  
Mohd Faisal Hushim ◽  
Ahmad Jais Alimin ◽  
Mohd Farris Mansor

Fuelling system is one of the crucial variables that must be focused on, in order to achieve good fuel efficiency and low engine out emissions. Fuel injection system seems a promising technology as a medium to supply suppressed fuel because of its high fuel delivery efficiency, enhanced fuel economy and reduced engine out emission. Port-fuel injection (PFI) system has been used widely on small four-stroke gasoline engine because of its simplicity compared to direct injection (DI) system. In this study, the effects of intake manifold angle of a PFI retrofit-kit to the engine performances and emission characteristics were investigated. Experimental works comprised wide-open throttle with variable dynamometer loads for two different angles: 90° and 150°. From this study, it was observed that 150° was the best angle, which produced high brake power (BP) and brake mean effective pressure (BMEP), brake specific fuel consumption (BSFC) and hydrocarbon (HC) emission.


2021 ◽  
pp. 146808742110012
Author(s):  
Nicola Giramondi ◽  
Anders Jäger ◽  
Daniel Norling ◽  
Anders Christiansen Erlandsson

Thanks to its properties and production pathways, ethanol represents a valuable alternative to fossil fuels, with potential benefits in terms of CO2, NOx, and soot emission reduction. The resistance to autoignition of ethanol necessitates an ignition trigger in compression-ignition engines for heavy-duty applications, which in the current study is a diesel pilot injection. The simultaneous direct injection of pure ethanol as main fuel and diesel as pilot fuel through separate injectors is experimentally investigated in a heavy-duty single cylinder engine at a low and a high load point. The influence of the nozzle hole number and size of the diesel pilot injector on ethanol combustion and engine performance is evaluated based on an injection timing sweep using three diesel injector configurations. The tested configurations have the same geometric total nozzle area for one, two and four diesel sprays. The relative amount of ethanol injected is swept between 78 – 89% and 91 – 98% on an energy basis at low and high load, respectively. The results show that mixing-controlled combustion of ethanol is achieved with all tested diesel injector configurations and that the maximum combustion efficiency and variability levels are in line with conventional diesel combustion. The one-spray diesel injector is the most robust trigger for ethanol ignition, as it allows to limit combustion variability and to achieve higher combustion efficiencies compared to the other diesel injector configurations. However, the two- and four-spray diesel injectors lead to higher indicated efficiency levels. The observed difference in the ethanol ignition dynamics is evaluated and compared to conventional diesel combustion. The study broadens the knowledge on ethanol mixing-controlled combustion in heavy-duty engines at various operating conditions, providing the insight necessary for the optimization of the ethanol-diesel dual-injection system.


2021 ◽  
Vol 13 (12) ◽  
pp. 168781402110381
Author(s):  
Li Wang ◽  
Zhaoming Huang ◽  
Wang Tao ◽  
Kai Shen ◽  
Weiguo Chen

EGR and excess-air dilution have been investigated in a 1.5 L four cylinders gasoline direct injection (GDI) turbocharged engine equipped with prechamber. The influences of the two different dilution technologies on the engine performance are explored. The results show that at 2400 rpm and 12 bar, EGR dilution can adopt more aggressive ignition advanced angle to achieve optimal combustion phasing. However, excess-air dilution has greater fuel economy than that of EGR dilution owing to larger in-cylinder polytropic exponent. As for prechamber, when dilution ratio is greater than 37.1%, the combustion phase is advanced, resulting in fuel economy improving. Meanwhile, only when the dilution ratio is under 36.2%, the HC emissions of excess-air dilution are lower than the original engine. With the increase of dilution ratio, the CO emissions decrease continuously. The NOX emissions of both dilution technologies are 11% of those of the original engine. Excess-air dilution has better fuel economy and very low CO emissions. EGR dilution can effectively reduce NOX emissions, but increase HC emissions. Compared with spark plug ignition, the pre chamber ignition has lower HC, CO emissions, and higher NO emissions. At part load, the pre-chamber ignition reduces NOX emissions to 49 ppm.


Author(s):  
Ripudaman Singh ◽  
Andrew Mansfield ◽  
Margaret Wooldridge

Emissions compliance during engine start-up conditions is a major obstacle for current automotive manufacturers across global markets. The challenges to meeting emissions targets are both due to increasingly stringent regulations and the difficulty in developing control strategies for a high degree-of-freedom and highly non-linear system. Online extremum-seeking (ES) methods offer a promising alternative to traditional optimization based on design-of-experiment based automotive calibration. With extremum-seeking methods, results from all prior experiments are used to intelligently and efficiently generate the next iteration of the control parameter(s). In this work, the applicability of the online extremum-seeking method is explored to optimize five performance variables (injection timing for two injection events, the injection fuel mass divided between the first and second injection events, air-fuel equivalence ratio and exhaust cam timing) to minimize brake specific fuel consumption while imposing different constraints on NOx emissions. The experiments were conducted using a production turbocharged four-cylinder gasoline engine with an advanced fuel injection system. The results show the utility of the ES strategy to quickly identify optimal control parameter combinations and the emissions and engine performance improvements during the calibration process. The results also demonstrate the dramatic benefit of the ES calibration strategy in terms of test time required.


2019 ◽  
Vol 22 (1) ◽  
pp. 140-151 ◽  
Author(s):  
Xue-Qing Fu ◽  
Bang-Quan He ◽  
Si-Peng Xu ◽  
Tao Chen ◽  
Hua Zhao ◽  
...  

Lean-burn combustion is effective in reducing fuel consumption of gasoline engines because of the higher specific heat ratio of the fuel lean mixture and reduced heat loss from lower combustion temperature. However, its application to real engines is hampered by the unstable ignition, high cyclic variability, and partial-burn due to slower combustion, as well as the restricted maximum lean-burn air/fuel ratio limit and the insufficiently low nitrogen oxides emission. Multi-point micro-flame-ignited hybrid combustion has been proposed and applied to extend the lean burn limit of premixed gasoline and air mixture. To achieve micro-flame-ignited combustion in premixed lean gasoline mixture formed by port fuel injection, a small amount of dimethyl ether is injected directly into the cylinder of a four-stroke gasoline engine to control and accelerate the ignition and combustion process so that the engine could be operated with the overall excess air coefficient (Lambda) of 1.9. The results show that heat release processes can be grouped into three forms, that is, ramp type, double-peak type, and trapezoid type. Regardless of single or split injections, direct injection timing of dimethyl ether dominates the features of heat release. The ramp type occurs at early injection timing while the double-peak type takes place at late injection timing. Trapezoid type appears between the above two types. Dimethyl ether injection timing controls the ignition timing and has less effect on combustion duration. Single injection of dimethyl ether leads to much earlier ignition timing and slightly longer combustion duration, forming higher nitrogen oxides emissions than the split injections. Ultra-low nitrogen oxides emissions and higher thermal efficiency are achieved in the ramp type combustion compared to the other two types of combustion in both injection approaches.


Author(s):  
Renyou Yang ◽  
Gerasimos Theotokatos ◽  
Dracos Vassalos

This study aims at the parametric investigation of the gas injection system settings of a large marine two-stroke dual fuel engine by using a developed and customized CFD method in the ANSYS Fluent software. The investigated engine injection system parameters include the gas injection timing, the gas injection duration, the gas injector lateral angle, and the gas injector holes number. Based on the comparison of the predicted performance parameters for the closed-cycle processes, the results indicate that the gas injector lateral angle is the most significant parameter that affects the engine power as well as the NO and CO2 emissions. For satisfying the contradictory objectives of retaining the engine power and reducing the NO and CO2 emissions, appropriate design settings for the gas injection are recommended for the investigated engine operation in the gas mode at 75% load.


Sign in / Sign up

Export Citation Format

Share Document