Analyses on the BIM Technology Using in the Design of Green Village Buildings

2014 ◽  
Vol 548-549 ◽  
pp. 1758-1762
Author(s):  
Yan Feng Li ◽  
Hui Chen Wang ◽  
Meng Zhao ◽  
Wen Yu Pan

Based on current status of village buildings as a starting point, combination of BIM technology with the design the green village buildings is discussed. By using software to simulate the concrete village building energy consumption, application effect of BIM technology is verified. Result shows that BIM (Building Information Modeling) technology not only help to make the building satisfying the green standards, saving energy by 32% than the other village buildings in the region , but also makes the time period percentage of building satisfying the requirement of minimum illumination that relying on natural lighting alone as much as 92.6%. It is helpful to energy saving, environmental protection, reduction of construction cost, and would become an important platform for planning and construction of green village buildings.

The variants of the division of the life cycle of a construction object at the stages adopted in the territory of the Russian Federation, as well as in other countries are considered. Particular attention is paid to the exemplary work plan – "RIBA plan of work", used in England. A feature of this document is its applicability in the information modeling of construction projects (Building information Modeling – BIM). The article presents a structural and logical scheme of the life cycle of a building object and a list of works that are performed using information modeling technology at various stages of the life cycle of the building. The place of information models in the process of determining the service life of the building is shown. On the basis of the considered sources of information, promising directions for the development of the life cycle management system of the construction object (Life Cycle Management) and the development of the regulatory framework in order to improve the use of information modeling in construction are given.


Author(s):  
Muhammadiya Rifqi ◽  
Heni Fitriani ◽  
Puteri Kusuma Wardhani

Buildings contribute more than 40% of world energy consumption, so it is feared that it will cause energy problems in thefuture, especially in the construction sector. One solution to reducing this problem is by analyzing energy use at the initialdesign stage and utilizing solar energy as one of the solar power plants (PLTS) in office buildings. To analyze the use ofenergy in buildings, Building Information Modeling (BIM) was used. The purpose of this research is to analyze the annualenergy level of office buildings in Palembang using BIM software, namely Autodesk Revit. The number of solar panels aswell as the amount of energy were also identified using web-based software (HelioScope) resulting the economic feasibilityas indicated by the installation of solar panels as a component of PV mini-grid. The results showed that the use of BIMtechnology in analyzing building energy can provide a detailed description of the building model at the design stage. Revitanalysis indicates that the building consumed electrical energy per year for about 3,647,713 kWh with a roof area of 1,657m2. In addition, based on the HelioScope analysis, the use of renewable energy from the installation of PLTS was 152,900kWh/year. Meanwhile, for economic feasibility analysis, the installation of PLTS in office buildings can provide a positive NetPresent Value (NPV), indicating a feasible project.


2020 ◽  
Vol 2020 (8) ◽  
pp. 16-24
Author(s):  
Szabłowska Paulina ◽  
Rochel Maciej

This paper describes the possibilities of using BIM (Building Information Modeling) technology based on object modeling in transport infrastructure projects. The main focus was on investments such as roads and railways. The objectives of implementing this technology were presented and its benefits for participants of the construction process were discussed. The basic principles, norms and documents related to the BIM methodology have been outlined. Then it was described at what stage the introduction of this technology is on the Polish market. Finally, examples of "implementation" projects currently implemented by the main managers of the rail and road network in Poland, ie PKP PLK and GDDKiA, were shown. Keywords: civil engineering, BIM, infrastructure.


10.29007/k8c7 ◽  
2020 ◽  
Author(s):  
Luciana Debs ◽  
Sara Gusmao Brissi

Recent improvements in the AEC industry, such as Building Information Modeling (BIM) and lean construction and sustainability, require that the design and construction process be approached from a holistic and collaborative manner. From an academic perspective, collaboration also is an important teaching and research component that allows for a well-rounded understanding of the AEC industry. However, very little research has been performed on collaboration in the AEC disciplines, specifically interdisciplinary collaboration. As a starting point, this paper focuses on academic collaboration in journal publications related to sustainability and building performance. The authors provide bibliometric and thematic analyses of three 2018 research publications related to building performance and written by faculty affiliated with construction departments. The main goal of the paper is to provide preliminary findings about which AEC disciplines were included and which themes were prevalent in collaborative publications. Preliminary findings indicated themes related to performance analysis of buildings and / or building components; indoor environmental quality; decision-making and evaluation methods; and life cycle assessment. Results can be used to identify potential areas that are conducive to collaborative work between construction and other AEC disciplines in order to stimulate more interdisciplinary collaboration within AEC research.


2019 ◽  
Vol 56 (5) ◽  
pp. 052802
Author(s):  
邬镇伦 Wu Zhenlun ◽  
程效军 Cheng Xiaojun ◽  
辛佩康 Xin Peikang ◽  
张立朔 Zhang Lishuo ◽  
胡敏捷 Hu Minjie

2018 ◽  
Vol 251 ◽  
pp. 06004 ◽  
Author(s):  
Vera Cherkina ◽  
Natalia Shushunova ◽  
Julia Zubkova

The use of information modeling technology, Building Information Modeling (BIM), for the quality control system and improving the safety level of buildings and structures allows for a much higher level of design, construction and operation. It is necessary to predict the different building conditions in the implementation of planning processes, that should be made safely and reasonably. This paper presents a summary of specific examples, that show the results of successful implementation of this method with reference to capital construction objects of varying complexity.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Qin Zhao ◽  
Yuchao Li ◽  
Xinhong Hei ◽  
Mingsong Yang

Collaborative work in the construction industry has always been one of the problems solved by BIM (Building Information Modeling) technology. The integration of IFC (Industry Foundation Classes) data as a general building information standard is one of the indispensable functions in collaborative work. The most practical approach of merging IFC data depends on GUID (Global Universal Identifier) comparison at present. However, GUID is not stable in current applications and often changes when exported. The intact representation of relationships between IFC entities is an essential prerequisite for proper association of IFC entities in IFC mergence. This paper proposes a graph-based method for IFC data merging. The IFC data are represented as a graphical data structure, which completely preserves the relationship between IFC entities. IFC mergence is accomplished by associating other data with an isomorphic graph that is obtained by mining the IFC graph. The feasibility of the method is proven by a program, and the method can ignore the impacts of GUID and other factors.


2012 ◽  
Vol 229-231 ◽  
pp. 2760-2764 ◽  
Author(s):  
Yi Jao Chen ◽  
Chung Wei Feng ◽  
Kung Wen Lee

The M/E/P (Mechanical, Electrical, and Plumbing) system of the building project has become more and more complex as the demand of the better living environment within the modern buildings increases. However, since the complexity and uniqueness involved within MEP trades, various fields of designers or contractors can hardly share their information with each other. This study employs BIM (Building Information Modeling) technology to assist the stakeholders of the construction projects to share and exchange information according to their needs. First, the process of different MEP disciplines will be systematically analyzed. Then the possible conflicts between trades will be identified. According to the study, necessary and important attributes required for the MEP BIM objects will be developed. Those developed BIM objects will later serve as the core of the communication platform, on which the project participants can easily access and share information. In addition, a better information integration mechanism for MEP systems will be developed throughout different phases of the project life cycle.


Sign in / Sign up

Export Citation Format

Share Document