scholarly journals Topics for Collaborative Research in AEC: Pilot Findings from a Sustainable Perspective

10.29007/k8c7 ◽  
2020 ◽  
Author(s):  
Luciana Debs ◽  
Sara Gusmao Brissi

Recent improvements in the AEC industry, such as Building Information Modeling (BIM) and lean construction and sustainability, require that the design and construction process be approached from a holistic and collaborative manner. From an academic perspective, collaboration also is an important teaching and research component that allows for a well-rounded understanding of the AEC industry. However, very little research has been performed on collaboration in the AEC disciplines, specifically interdisciplinary collaboration. As a starting point, this paper focuses on academic collaboration in journal publications related to sustainability and building performance. The authors provide bibliometric and thematic analyses of three 2018 research publications related to building performance and written by faculty affiliated with construction departments. The main goal of the paper is to provide preliminary findings about which AEC disciplines were included and which themes were prevalent in collaborative publications. Preliminary findings indicated themes related to performance analysis of buildings and / or building components; indoor environmental quality; decision-making and evaluation methods; and life cycle assessment. Results can be used to identify potential areas that are conducive to collaborative work between construction and other AEC disciplines in order to stimulate more interdisciplinary collaboration within AEC research.

2018 ◽  
Vol 2 (3) ◽  
pp. 209
Author(s):  
Nouran Elabd ◽  
Laila Khodeir

Since the expression "Building Information Modeling" (BIM) was initially presented in the Engineering and Construction AEC industry in the most recent decade; it has changed numerous parts of the design, construction, and operation of a building. BIM is a middleware connector that represents the advancement and utilization of PC. BIM has various frameworks which have been conducted by the pioneers in the BIM industry to enhance the BIM process. There is a study of the reflection of those frameworks on the Egyptian AEC industry to overcome the threats that prevent Egypt from applying BIM technology more broadly. In addition, a comparison is conducted between the successful countries which implemented BIM in their projects and managed to enhance their adoption by examining the local challenges and targets. The countries then made strategies and standards to overcome the aforementioned obstacles. Furthermore, successful actions were applied that can match with the Egyptian industrial requirements. This paper is expected to define the challenges which are facing the Egyptian industry to apply BIM and the potential capabilities of solving those problems. To acquire the vital information to carry on this paper, a questionnaire was created and distributed in the AEC community. The reason for the study was to see how experts consider BIM as a device in the fields of design and construction in general and in the Egyptian industry particularly. The aim of this paper is to propose a framework through several case studies which are discussed, analyzed and compared. The purpose of the analysis is to explore the importance of using BIM. Additionally, exploring the effect of different parameters on implementing BIM helped significantly during the process. It starts with proposing its framework with evaluating matrix that contains attributes to measure its success, moreover, it serves as a great help to the Egyptian companies that make real business decisions about enhancing BIM implementation through this framework.


Author(s):  
Sagar V. Mundhokar

Abstract: Construction industry is believed to be one of the most criticized industries worldwide. During the last two decades, this criticism has denoted a lot of problems. Without disregarding any of the industry problems, it seems that the most criticized problems are low delivery performance, lack of innovation, lack of collaboration and fragmented nature of the industry. To overcome these problems, a collaborative work environment is needed. During the last few years, the use of advanced information technologies in construction hasincreased to support the industry requirement of collaboration environment. Keywords: Building Information Modeling BIM, BIMimplementation, BIM Barriers


2018 ◽  
Vol 147 ◽  
pp. 06002
Author(s):  
Fauzan Alfi Agirachman ◽  
Ilham Fajar Putra ◽  
Adam Angkawijaya

This paper presents our initial study on Building Information Modeling (BIM) adoption urgency for architecture, engineering and construction (AEC) industry in Indonesia. Currently, BIM is being adopted by many countries around the world because of its’ efficiency and other benefits. Meanwhile, most of AEC industries in Indonesia still using the conventional method and there are no regulations from Indonesian AEC authority for adopting BIM. With that situation, a study of BIM adoption in Indonesian AEC industries is important. This study uses a qualitative approach with explorative type. Input from the survey is evaluated qualitatively using content analysis, distribution analysis and correspondence analysis method. Based on analysis result, it shows that BIM as a mean to encourage a more sustainable approach in AEC industry is still in its development phase but it shows great potentials and it gives stakeholders a better way to achieve sustainable built environment. Current lack of awareness and understanding of BIM in Indonesia, particularly in the education sector, is a key factor that impedes BIM adoption and one that can be addressed by integrating BIM into AEC curriculum. Government and practitioners alike need to develop a strategic roadmap to pave way for successful BIM implementation.


2016 ◽  
Vol 11 (2) ◽  
pp. 116-130 ◽  
Author(s):  
Karen Kensek ◽  
Ye Ding ◽  
Travis Longcore

Green buildings should respect nature and endeavor to mitigate harmful effects to the environment and occupants. This is often interpreted as creating sustainable sites, consuming less energy and water, reusing materials, and providing excellent indoor environmental quality. Environmentally friendly buildings should also consider literally the impact that they have on birds, millions of them. A major factor in bird collisions with buildings is the choice of building materials. These choices are usually made by the architect who may not be aware of the issue or may be looking for guidance from certification programs such as LEED. As a proof of concept for an educational tool, we developed a software-assisted approach to characterize whether a proposed building design would earn a point for the LEED Pilot Credit 55: Avoiding Bird Collisions. Using the visual programming language Dynamo with the common building information modeling software Revit, we automated the assessment of designs. The approach depends on parameters that incorporate assessments of bird threat for façade materials, analyzes building geometry relative to materials, and processes user input on building operation to produce the assessment.


2020 ◽  
Vol 27 (9) ◽  
pp. 2409-2427
Author(s):  
Honglei Liu ◽  
Jiule Song ◽  
Guangbin Wang

PurposeWith the increasing attention acquired from researchers and practitioners in Architecture, Engineering and Construction (AEC) industry, building information modeling (BIM) has fundamentally changed the approach we design, construct and delivery, as well as operate and maintenance of buildings and civil infrastructures. This study tries to provide an innovative perspective on BIM research. This study aims to analyze the necessity and feasibility of BIM user satisfaction research and define what BIM user satisfaction is, and then to develop a quantitative method for the measurement of BIM user satisfaction.Design/methodology/approachAs it is indicated in the content, BIM user satisfaction is measured by the sum of the user's weighted reactions to a set of factors. To be specific, the entropy method was adopted to calculate the “weighting” of the factors, and the triangular fuzzy number (TFN) method was selected to compute the “scoring” of the factors. Through the literature review, methodology and tool development, as well as case study and discussions, this paper was generated sequentially.FindingsThis study found that the proposed tool for the measurement of BIM success is valid and reliable; it formerly translated the conceptual definition of BIM user satisfaction into an accurate measurement instrument. It also indicated that many factors are affecting the BIM users' satisfaction, and each of the factors inherited various importance and score, and the findings are expected to improve the performance and effectiveness of BIM management.Originality/valueThrough the translation of the conceptual BIM user satisfaction into a valid quantitative measurement instrument, this research provides an excellent framework for the management of BIM from the user's perspective, and it could help to stimulate user's acceptance of BIM in the AEC industry in future.


2020 ◽  
Vol 10 (13) ◽  
pp. 4437 ◽  
Author(s):  
Carlo Iapige De Gaetani ◽  
Mertkan Mert ◽  
Federica Migliaccio

It is incontrovertible that an exchange of files is essentially required at several stages of the workflow in the architecture, engineering, and construction (AEC) industry. Therefore, investigating and detecting the capabilities/inabilities of building information modeling (BIM) software packages with respect to interoperability can be informative to stakeholders who exchange data between various BIM packages. The work presented in this paper includes a discussion on the interoperability of different software platforms commonly used in the AEC industry. Although, in theory, flawless interoperability of some types of files between different BIM platforms is ensured, in practical applications, this is not always the case. Hence, this research aims to identify faults in data exchange by assessing different possible scenarios where a sample Industry Foundation Classes (IFC) four-dimensions (4D) BIM model and related Gantt charts are exchanged. Throughout the interoperability analysis of both IFC file and Gantt charts, the following checks were carried out: geometrical and nongeometrical information exchange through IFC files, 4D information correct readability, and presence of missing schedule information in Gantt charts after their import/export procedure. The results show that interoperability between the analyzed platforms is not always ensured, providing useful insight into realistic scenarios.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Qin Zhao ◽  
Yuchao Li ◽  
Xinhong Hei ◽  
Mingsong Yang

Collaborative work in the construction industry has always been one of the problems solved by BIM (Building Information Modeling) technology. The integration of IFC (Industry Foundation Classes) data as a general building information standard is one of the indispensable functions in collaborative work. The most practical approach of merging IFC data depends on GUID (Global Universal Identifier) comparison at present. However, GUID is not stable in current applications and often changes when exported. The intact representation of relationships between IFC entities is an essential prerequisite for proper association of IFC entities in IFC mergence. This paper proposes a graph-based method for IFC data merging. The IFC data are represented as a graphical data structure, which completely preserves the relationship between IFC entities. IFC mergence is accomplished by associating other data with an isomorphic graph that is obtained by mining the IFC graph. The feasibility of the method is proven by a program, and the method can ignore the impacts of GUID and other factors.


2019 ◽  
Vol 9 (22) ◽  
pp. 4728 ◽  
Author(s):  
Hyunjoo Kim ◽  
Jonghyeob Kim

Building information modeling (BIM) provides facility managers with a large database consisting of 3D geometric data as well as management data. In particular, Industry Foundation Class (IFC) has been applied in many studies as it provides extensive and diverse information regarding building components. With the use of BIM combined with case-based reasoning (CBR), in this study, a model was developed to estimate replacement costs by retrieving cost information from IFC. This study focused on the replacement of windows for office buildings, and the costs associated with that replacement. Two main advantages were identified in the proposed approach. First, the replacement information required for the comparison of different cases is automatically obtained from a BIM file and parsed for predicting a cost estimate using IFC. Next, the accuracy is increased by matching various cost-related data such as contractors and manufacturers in the estimation of replacement costs with the help of CBR.


2010 ◽  
Vol 171-172 ◽  
pp. 399-402 ◽  
Author(s):  
Xiao Dong Xuan

Building information modeling (BIM) is a new method of dealing with the design and information of building component, this project created Building integrated photovoltaics (BIPV) in BIM with parametric design, it is a new way to study and analysis BIPV. In BIM models, all information about the building components and its lifecycle are included. Therefore the study utilized this important characteristic of BIM to explore its application in BIPV design. The author used BIM software Revit to develop a BIPV building model as the parametric prototype and programmed with panels’ information in C# 2008 to correlate the angle of photovoltaic (PV) panels with sun altitude, and finally applied application programming interface (API) in Revit to control these panels’ angle by the sun path.


Sign in / Sign up

Export Citation Format

Share Document