Pore Size Control of Ordered Mesoporous Carbons and Adsorption Performance of Dye Molecules

2014 ◽  
Vol 548-549 ◽  
pp. 38-42
Author(s):  
Yang Cao ◽  
Jian Zhong Zhu ◽  
Ying Ding ◽  
Gang Han ◽  
Rong Liang Fan ◽  
...  

Different kinds of mesoporous carbon materials can be obtained through the use of different templates or control condition. The study describes the adsorption behavior of dyes such as rhodamine B, methylthionine chloride and reactive red from aqueous solution using ordered mesoporous carbon in different pore size distribution. In this study, the method of controlling the aperture of ordered mesoporous carbon is changing the mass ratio of the revised template and carbon source. Ordered mesoporous carbon was synthesized with the evaporation induced self-assembly method in different proportion of template agent (F127) and phenolic resin and employed to evaluate the effects of initial concentration, contact time, pH and temperature on the removal of dye solution in batch experiments. The samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and N2 adsorption-desorption. These analyses reveal that the mesoporous carbon have ordered structure. The experimental results indicated the ordered mesoporous carbon in different pore size distribution showed significant differences in the adsorption of different dyes and it was provided with an excellent selective adsorption.

Author(s):  
CHANHO PAK ◽  
SANG HOON JOO ◽  
DAE JONG YOU ◽  
HYUK CHANG ◽  
HYUNG IK LEE ◽  
...  

2014 ◽  
Vol 1033-1034 ◽  
pp. 416-419
Author(s):  
Ying Ding ◽  
Jian Zhong Zhu ◽  
Liang Chen ◽  
Rong Liang Fan ◽  
Gang Han ◽  
...  

Ordered mesoporous materials, because of its specific high surface area, a large pore size and uniform pore size distribution, reflects its more obvious advantages in the adsorption. The study describes the adsorption behavior of disinfection by-products such as dichloroacetic acid from aqueous solution using ordered mesoporous carbon in different pore size distribution. Ordeded mesoporous carbon was synthesized via the evaporation induced self-assembly method with Pluronic F127 as a template and phenolic resin as a carbon source and employed to evaluate the effects of initial concentration, contact time, pH and temperature on the removal of dichloroacetic acid in batch experiments. In this study, the method of controlling the aperture of ordered mesoporous carbon is changing the polymerization time of phenolic resin which can change the relative molecular weight and the length of molecular chain of phenolic resin. The samples were characterized by scanning electron microscopy (SEM) and N2 adsorption-desorption. These analyses reveal that the mesoporous carbon have ordered structure. The experimental results indicated the ordered mesoporous carbon in different pore size distribution showed significant differences in the adsorption of dichloroacetic acid and their adsorption capacities are 5.80, 20.62, 16.24 mg/g, respectively.


2016 ◽  
Vol 78 (3-2) ◽  
Author(s):  
Nur Izzatie Hannah Razman ◽  
Salasiah Endud ◽  
Izan Izwan Misnon ◽  
Zainab Ramli

In this study, ordered mesoporous carbon (OMC) was prepared via nano-casting method by using Santa Barbara Amorphous (SBA)-15 as a template and sucrose as a carbon precursor. The OMC was subsequently oxidized with aqueous nitric acid and referred as MOMC. The physicochemical properties of OMC and MOMC were determined using nitrogen adsorption–desorption analyser, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR). The results proved that the carbon replication process was successful. The electrochemical performance tests were carried out using cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) in 1 M KOH electrolyte for 1000 cycles. After oxidative treatment, the specific surface area and pore volume of OMC decreased but the specific capacitance of the electrode material has significantly increased from 117      F g–1 to 344 F g–1 at a scan rate of 10 mV s–1.   


2014 ◽  
Vol 906 ◽  
pp. 39-44
Author(s):  
Cheng Li Zhang ◽  
Shi Fei Kang ◽  
Qian Yu Zhang ◽  
Xi Li

Cu-modified graphitic ordered mesoporous carbon supported TiO2 catalyst was synthesized based on a hard template method. X-ray diffraction, nitrogen adsorption-desorption, scanning electron microscopy and transmission electron microscopy analysis techinques were used to characterize the sample. It was observed that copper and anatase TiO2 nanoparticles were well dispersed in the Cu-modified mesoporous graphitic carbon, and the resulting composite with ordered mesostructure and high specific surface area exhibited an exceptionally high activity in the photocatalytic reduction of CO2 with H2O under simulated solar irradiation.


2013 ◽  
Vol 25 (2) ◽  
pp. 771-774 ◽  
Author(s):  
Tian-Dong Zhang ◽  
Bo Zhou ◽  
Xiao-Ying Zeng ◽  
Wei Zhe ◽  
Li-Li Zhang ◽  
...  

Author(s):  
Lenin Jose Huerta ◽  
Rebeca Torres Fajardo ◽  
Juan Primera Ferrer

  En este trabajo se investigó la síntesis de xerogeles de sílice por la vía de los atranos, y se evaluó la influencia de la concentración del agente iniciador (HCl) y la presencia o no del surfactante (CTAB), sobre el tiempo de gelificación y las propiedades texturales de los materiales obtenidos. Las caracterizaciones se realizaron mediante: isotermas de adsorción-desorción de nitrógeno, microscopía electrónica de barrido y calorimetría diferencial de barrido. Los tiempos de gelificación aumentaron en la medida que se disminuyó la concentración del HCl y, en general, los xerogeles preparados presentaron una buena rigidez cuando estos se dejaron a tiempos mayores de 20 horas. La distribución de tamaño de poro (determinada mediante la técnica BJH) para los xerogeles calcinados preparados sin surfactante presentaron un sistema de poro bien definido de 16,4 nm en promedio, mientras los xerogeles calcinados preparados con surfactante no presentaron una distribución de tamaño de poro bien definida, ambos casos mostraron áreas superficiales de alrededor de 580 m2/g. Por calorimetría diferencial de barrido se observaron dos picos para la muestra de xerogel sin surfactante, uno alrededor de 80 °C debido a la evaporación del agua y el otro a 265 °C atribuido a la descomposición de la materia orgánica presente en el gel; para la muestra de xerogel con surfactante se observó un pico bien definido a 130 °C, atribuido a la pérdida del agua. Por microscopía electrónica de barrido, en los xerogeles calcinados se observaron poros con tamaños alrededor de los 15 nm.   Palabra clave: Xerogel, atrano, surfactante, sílice, gelificación.   Abstract In this work, the synthesis of silica xerogels by the atrane way was investigated, evaluating: concentration influence of the initiating agent (HCl) and the presence or not of the surfactant (CTAB), over gelation time, and the textural properties of the obtained materials. Characterizations were carried out by nitrogen adsorption-desorption isotherms, scanning electron microscopy, and differential scanning calorimetry. Gelation times increased as the HCl concentration decreased, and, in general, xerogels prepared presented good rigidity when they were aging for times greater than 20 hours. Pore size distribution (determined by the BJH technique) for the calcined xerogels prepared without surfactant presented a well-defined pore system of 16.4 nm on average, while the calcined xerogels prepared with surfactant did not present a well-defined pore size distribution, both cases showed surface areas of around 580 m2/g. In differential scanning calorimetry, two peaks were observed for the xerogel sample without surfactant, one around 80 °C due to water evaporation, and the other one at 265 °C attributed to the decomposition of organic matter present in the gel; for the surfactant xerogel sample, a well-defined peak was observed at 130 °C, attributed to the loss of water. By scanning electron microscopy, pores with sizes around 15 nm in calcined xerogels were observed.   Keywords: Xerogel, atrane, surfactant, silica, gelation.  


Sign in / Sign up

Export Citation Format

Share Document