Effects of Biodiesel Derived by Waste Cooking Oil on Fuel Consumption and Performance of Diesel Engine

2014 ◽  
Vol 554 ◽  
pp. 520-525 ◽  
Author(s):  
Amir Khalid ◽  
Azim Mudin ◽  
M. Jaat ◽  
Norrizal Mustaffa ◽  
Bukhari Manshoor ◽  
...  

Biodiesel is the alternate fuel which is derived from renewable sources either is vegetable oils or animal fats. For that reason, the vehicle run by Bio-diesel Fuel (BDF) has been a potential option and the alternative sources of fuel are receiving a lot attention in the automotive industry. The use waste cooking oil (WCO) biodiesel as an alternative fuel in engines has advantages from both economic and the emissions of carbon monoxide (CO) and hydrocarbons (HC) in the exhaust gas. Purpose of this study is to investigate the effects of waste cooking oil blended fuel, engine speed and test load conditions on the fuel properties, combustion characteristics and engine performance. The engine speed was varied from 1500 to 3000 rpm, load test condition varied by dynapack chassis dynamometer in 0, 50 and 100% and blends of 5(WCO5), 10(WCO10) and 15vol%(WCO15) waste cooking oil with the diesel fuel. The results showed that the use of WCO as biodiesel results in a higher fuel consumption rate, especially at low engine speed and full load condition.

2015 ◽  
Vol 773-774 ◽  
pp. 491-495 ◽  
Author(s):  
Amir Khalid ◽  
Azmi Abas

Biodiesel is the alternate fuel which is derived from renewable sources either is vegetable oils or animal fats. Biodiesel is non-toxic, have higher biodegradability, free of sulphur, no aromatics and its oxygen content of about 10-11% which is usually not contained in diesel fuel. These characteristics thus predominantly influences to the emissions of carbon monoxide (CO) and hydrocarbons (HC) in the exhaust gas. Purpose of this study is to investigate the effects of fuel additive, oil palm blended fuel, engine speed and test load conditions on the exhaust emissions and engine performance. The engine speed was varied from 1500 to 3000 rpm, load test condition varied by dynapack chassis dynamometer in 0, 50 and 100% and blends of 5(B5), 10(B10) and 15vol%(B15) palm oil with the diesel fuel. Increased of blends ratio with same mixing booster quantity can improve the engine performance, combustion process and give less CO emission. However, this condition tends to produce high NOx production due to higher oxygenated fuel in biodiesel content.


2014 ◽  
Vol 663 ◽  
pp. 39-43
Author(s):  
Amir Khalid ◽  
M. Jaat ◽  
Norrizal Mustaffa ◽  
M.D. Anuar ◽  
B. Manshoor ◽  
...  

Biodiesel is the alternate fuel which is derived from renewable sources either is vegetable oils or animal fats. Biodiesel is non-toxic, have higher biodegradability, free of sulphur, no aromatics and its oxygen content of about 10-11% which is usually not contained in diesel fuel. These characteristics thus predominantly influences to the emissions of carbon monoxide (CO) and hydrocarbons (HC) in the exhaust gas. Purpose of this study is to investigate the effects of oil palm blended fuel, engine speed and test load conditions on the fuel properties, combustion process, combustion characteristics, exhaust emissions and engine performance. The engine speed was varied from 1500 to 3000 rpm, load test condition varied by dynapack chassis dynamometer in 0% ,50% and 100% and blends of 5 (B5), 10 (B10) and 15 vol% (B15) palm oil with the diesel fuel. Increased of blends ratio can improve the combustion process and give less HC and CO emission and almost nearly engine performance. However, this condition tends to produce high NOx production due to higher oxygenated fuel in biodiesel content.


2015 ◽  
Vol 773-774 ◽  
pp. 425-429 ◽  
Author(s):  
Nur Atiqah Ramlan ◽  
Abdul Adam Abdullah ◽  
Mohd Herzwan Hamzah ◽  
Nur Fauziah Jaharudin ◽  
Rizalman Mamat

The depletion of fossil fuels as well as the rises of greenhouse gases had caused most government worldwide to follow the international energy policies for the use of biodiesel. One of the economical sources for biodiesel production is waste cooking oil. The use of waste cooking oil is more sustainable if they can perform similarly to conventional diesel fuel. This paper deals with the experimental study carried out to evaluate the engine performance and exhaust emission of diesel engine operated by biodiesel from waste cooking oil at various engine speed. The biodiesel used are known as B5, which contains of 5% of waste cooking oil and 95% of diesel fuel. The other one is B20, which contains of 20% of waste cooking oil plus 80% of diesel. Diesel was used as a comparison purposes. The results show that power and torque for B5 give the closest trend to diesel. In terms of heat release, diesel still dominates the highest value compared to B5 and B20. For exhaust emission, B5 and B20 showed improvement in the reduction of NOx and PM.


2013 ◽  
Vol 465-466 ◽  
pp. 418-422
Author(s):  
Nur Atiqah Ramlan ◽  
Mohd Herzwan Hamzah ◽  
Nur Fauziah Jaharudin ◽  
Abdul Adam Abdullah ◽  
Rizalman Mamat

Waste cooking oil (WCO) is one of the economical and easiest sources for biodiesel production. The use of WCO in diesel engine is sustainable if they can perform similarly to diesel fuel. Therefore, this paper presents the performance and combustion characteristics of a single cylinder diesel engine fueled with biodiesel from WCO and compared with diesel fuel. In this study, the WCO was blended with diesel fuel at 5% and 10% blending ratio and named as B5 and B10 respectively. The experiment has been conducted at variable engine speed, constant load and at compression ratios of 17.7. The performance parameters that have been analyzed in this experiment were engine power, torque and in-cylinder pressure. In the end, results show that the engine performance of B5 and B10 was slightly similar to diesel fuel and can be used as a diesels substitute.


2015 ◽  
Vol 773-774 ◽  
pp. 420-424 ◽  
Author(s):  
Nur Fauziah Jaharudin ◽  
Nur Atiqah Ramlan ◽  
Mohd Herzwan Hamzah ◽  
Abdul Adam Abdullah ◽  
Rizalman Mamat

Particulate matter (PM) is one of the major pollutants emitted by diesel engine which have adverse effects on human health. Accordingly, many researches have been done to find alternative fuels that are clean and efficient. Biodiesel is preferred as an alternative source for diesel engine which produces lower PM than diesel fuel. However, the manufacturing cost of biodiesel from vegetable oil is expensive. Therefore, using waste cooking oil (WCO) for biodiesel would be more economical and sustainable solution. The characteristics of direct injection diesel engine in term of the PM have been investigated experimentally in this study. The experiments were conducted using single cylinder diesel engine with different speed (1200 rpm, 1500 rpm, 1800 rpm, 2100 rpm, 2400 rpm) at constant load. PM emission of WCO B100 and diesel fuel was compared and the effect of PM components such as soluble organic fraction (SOF) and soot were studied. The result showed WCO B100 reduces the PM emission at all engine speed. Furthermore, both fuels showed highest reduction of PM concentration at moderate engine speed of 1500 rpm.


Author(s):  
A. M. Liaquat ◽  
H. H. Masjuki ◽  
M. A. Kalam ◽  
M. M. K. Bhuiya ◽  
M. Varman

Due to diminishing petroleum reserves and the environmental consequences of exhaust gases from petroleum fuelled engines, alternative fuels are becoming increasingly important for diesel engines. The processed form of vegetable oil (Biodiesel) and waste products (waste cooking oil) offer attractive alternative fuels for compression ignition engines. In this study experimental work has been carried out to investigate engine performance parameters and emissions characteristics for direct injection diesel engine using coconut biodiesel and waste cooking oil blends without any engine modifications. A total of three fuel samples, such as DF (100% low-sulfur diesel fuel), CB10 (10% coconut biodiesel and 90% DF), and C5W5 (5% CB + 5% waste cooking oil and 90% DF) respectively are used. Engine performance test was performed at 100% load keeping throttle 100% wide open with variable speeds of 1500 to 2400 rpm at an interval of 100 rpm. Whereas, emission tests were carried out at 2300 rpm at 100% and 80% throttle position. As the results of investigations, there has been a decrease in torque and brake power, where increase in specific fuel consumption has been observed for blend fuels over the entire speed range as compared to diesel fuel. In case of engine exhaust gas emissions, lower HC, CO, CO2 emissions and higher NOx emissions, were found for fuel blends compared to diesel fuel. However, sound level for both blend fuels was lower as compared to diesel fuel. It can be concluded that CB10 and C5W5 can be used in diesel engines without any engine modifications and have beneficial effects both in terms of emission reductions and alternative petroleum diesel fuel. However, C5W5 produced better results compared to CB10.


2014 ◽  
Vol 663 ◽  
pp. 13-18 ◽  
Author(s):  
M. Habibullah ◽  
H.H. Masjuki ◽  
M.A. Kalam ◽  
A.M. Ashraful ◽  
K.A.H. Al Mahmud ◽  
...  

Now-a-days the demand of alternative fuel is continuously increasing all over the world due to the rapid depletion of fossil fuel and increased global demand. Biodiesel is renewable and sustainable energy source derived from vegetable oils and animal fats which can be the best substitute of fossil fuel. This paper investigates the property of different biodiesel such as palm, coconut and their blends with conventional diesel also analyzed the engine performance like engine break power, speed, break specific fuel consumption (BSFC), torque in diesel engine. In this paper 20% palm biodiesel with diesel (P20), 20% coconut biodiesel with diesel (C20), 30% palm biodiesel with diesel (P30), 30% coconut biodiesel with diesel (C30) and combination of 15% palm biodiesel and 15% of coconut biodiesel with diesel (C15P15) were used for study. Biodiesel was produced by using transesterification process. The density and kinematic viscosity for C15P15 fuel is slightly higher and flash point is slightly lower than diesel fuel as well as others two biodiesel blends whereas pure palm oil biodiesel shows the higher flash point and acid value. Engine performance test was carried out at 75 kg load condition with variable speeds of 1400 rpm to 2000 rpm at an interval of 200 rpm. Engine brake power produced by mixed biodiesel (C15P15) is slightly lower than the fossil diesel but slightly higher than biodiesel (only palm or coconut). Engine torque produce by the mixed biodiesel is almost the same with the fossil diesel but higher than the others biodiesel blends. Engine brake specific fuel consumption of mixed biodiesel is slightly higher than fossil diesel but lower than others existing biodiesel. It can be reported that the fuel C15P15 showed better performance and can be used as fuel alternative to diesel fuel to reduce the greenhouse gas emission and dependency on crude oil.


2017 ◽  
Vol 21 (1 Part B) ◽  
pp. 581-589 ◽  
Author(s):  
Samet Gurgen ◽  
Bedir Unver ◽  
İsmail Altin

This paper investigates the impacts of using n-butanol-diesel fuel and ethanol-diesel fuel blends on engine performance, exhaust emission, and cycle-by-cycle variation in a Diesel engine. The engine was operated at two different engine speed and full load condition with pure diesel fuel, 5% and 10% (by vol.) ethanol and n-butanol fuel blends. The coefficient of variation of indicated mean effective pressure was used to evaluate the cyclic variability of n-butanol-diesel fuel and ethanol-diesel fuel blends. The results obtained in this study showed that effective efficiency and brake specific fuel consumption generally increased with the use of the n-butanol-diesel fuel or ethanol-diesel fuel blends with respect to that of the neat diesel fuel. The addition of ethanol or n-butanol to diesel fuel caused a decrement in CO and NOx emissions. Also, the results indicated that cycle-by-cycle variation has an increasing trend with the increase of alcohol-diesel blending ratio for all engine speed. An increase in cyclic variability of alcohol-diesel fuel blends at low engine speed is higher than that of high engine speed.


2012 ◽  
Vol 550-553 ◽  
pp. 687-692
Author(s):  
Guang Rui Liu ◽  
Guan Yi Chen

Biodiesel, as an alternative auto fuel for conventional fossil fuel, has drawn wide attention in recent years. In this research, a two-step process for biodiesel production using waste cooking oil as feedstock was studied in a pilot plant with a treatment capacity of 3 ton/d. The results show that: the process exihibited a good conversion ratio and the biodiesel displayed suitable physical-chemical properties in comparison with diesel fuel, such as flash point of 137°C, viscosity of 4.49 mm2/s, acid value of 0.44 mg KOH/g etc. The quality of biodiesel meets the agreement with the European specification defined by EN 14214. Afterwards, the mixture of biodiesel and diesel were test in the engine with a ratio of 50/50(v/v), 20/80(v/v), and 0/100(v/v). It indicates the mixed fuel has a reasonable fuel consumption rates without diesel engine modification, when the biodiesel blended with 0# diesel as fuel. The present results demonstrated that the industrial scale plant would achieve promising objective with waste cooking oils and animal fats as raw material. Also, this biodiesel-based diesel fuel could be applied in Tianjin local public transportation system that improves its sustainable development.


Sign in / Sign up

Export Citation Format

Share Document