Discussion on Weft Insertion Processing Parameters of Air-Jet Loom

2014 ◽  
Vol 556-562 ◽  
pp. 1005-1008 ◽  
Author(s):  
Jin Ming Lu

Configuration methods of weft insertion processing on air jet loom were discussed. Take GA708-280 Air Jet Loom as an example, configuration methods of weft insertion processing was analyzed, including open and close time of main nozzle and additional nozzle solenoid valve, air jet pressure of main nozzle and additional nozzle, release time of accumulator retaining pin. It is considered that jet weft time parameter of air jet loom should be set according to fabric weave and variety. Air jet pressure should be set according to method of high pressure for example 4.0×105Pa to low pressure gradually.

2013 ◽  
Vol 22 (6) ◽  
pp. 606-612 ◽  
Author(s):  
Yuzhen Jin ◽  
Ruoyu Deng ◽  
Yingzi Jin ◽  
Xudong Hu

2020 ◽  
Author(s):  
Ruobin Dai ◽  
Hongyi Han ◽  
Tianlin Wang ◽  
Jiayi Li ◽  
Chuyang Y. Tang ◽  
...  

Commercial polymeric membranes are generally recognized to have low sustainability as membranes need to be replaced and abandoned after reaching the end of their life. At present, only techniques for downcycling end-of-life high-pressure membranes are available. For the first time, this study paves the way for upcycling fouled/end-of-life low-pressure membranes to fabricate new high-pressure membranes for water purification, forming a closed eco-loop of membrane recycling with significantly improved sustainability.


Crystals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 34
Author(s):  
Akun Liang ◽  
Robin Turnbull ◽  
Enrico Bandiello ◽  
Ibraheem Yousef ◽  
Catalin Popescu ◽  
...  

We report the first high-pressure spectroscopy study on Zn(IO3)2 using synchrotron far-infrared radiation. Spectroscopy was conducted up to pressures of 17 GPa at room temperature. Twenty-five phonons were identified below 600 cm−1 for the initial monoclinic low-pressure polymorph of Zn(IO3)2. The pressure response of the modes with wavenumbers above 150 cm−1 has been characterized, with modes exhibiting non-linear responses and frequency discontinuities that have been proposed to be related to the existence of phase transitions. Analysis of the high-pressure spectra acquired on compression indicates that Zn(IO3)2 undergoes subtle phase transitions around 3 and 8 GPa, followed by a more drastic transition around 13 GPa.


Author(s):  
Kun Li ◽  
Junjie Wang ◽  
Vladislav A. Blatov ◽  
Yutong Gong ◽  
Naoto Umezawa ◽  
...  

AbstractAlthough tin monoxide (SnO) is an interesting compound due to its p-type conductivity, a widespread application of SnO has been limited by its narrow band gap of 0.7 eV. In this work, we theoretically investigate the structural and electronic properties of several SnO phases under high pressures through employing van der Waals (vdW) functionals. Our calculations reveal that a metastable SnO (β-SnO), which possesses space group P21/c and a wide band gap of 1.9 eV, is more stable than α-SnO at pressures higher than 80 GPa. Moreover, a stable (space group P2/c) and a metastable (space group Pnma) phases of SnO appear at pressures higher than 120 GPa. Energy and topological analyses show that P2/c-SnO has a high possibility to directly transform to β-SnO at around 120 GPa. Our work also reveals that β-SnO is a necessary intermediate state between high-pressure phase Pnma-SnO and low-pressure phase α-SnO for the phase transition path Pnma-SnO →β-SnO → α-SnO. Two phase transition analyses indicate that there is a high possibility to synthesize β-SnO under high-pressure conditions and have it remain stable under normal pressure. Finally, our study reveals that the conductive property of β-SnO can be engineered in a low-pressure range (0–9 GPa) through a semiconductor-to-metal transition, while maintaining transparency in the visible light range.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Iman Rousta ◽  
Farshad Javadizadeh ◽  
Fatemeh Dargahian ◽  
Haraldur Ólafsson ◽  
Amin Shiri-Karimvandi ◽  
...  

In this study, precipitation data for 483 synoptic stations, and the U&V component of wind and HGT data for 4 atmospheric levels were respectively obtained from IRIMO and NCEP/NCAR databases (1961–2013). The precipitation threshold of 1 mm and a minimum prevalence of 50% were the criteria based on which the prevalent precipitation of Iran was identified. Then, vorticity of days corresponding to prevalent winter precipitation was calculated and, by performing cluster analysis, the representative days of vorticity were specified. The results showed that prevalent winter precipitation vorticity in Iran is related to the vorticity patterns of low pressure of Mediterranean-low pressure of Persian Gulf dual-core, low pressure closed of central Iran-high pressure of East Europe, Ural low pressure-Middle East High pressure, Saudi Arabia low pressure-Europe high pressure, and high-pressure belt of Siberia-low pressure of central Iran. At the same time, the most intense vorticity occurred when the climate of Iran was influenced by a massive belt pattern of Siberian high pressure-low pressure of central Iran. However, at the time of prevalent winter precipitation in Iran, an intense vorticity is drawn with the direction of Northeast and Northwest from the center of Iraq to the south of Iran.


2020 ◽  
pp. 146808742096933
Author(s):  
Xiangyu Meng ◽  
Sicheng Liu ◽  
Jingchen Cui ◽  
Jiangping Tian ◽  
Wuqiang Long ◽  
...  

A novel method called high-pressure air (HPA) jet controlled compression ignition (JCCI) based on the compound thermodynamic cycle was investigated in this work. The combustion process of premixed mixture can be controlled flexibly by the high-pressure air jet compression, and it characterizes the intensified low-temperature reaction and two-stage high-temperature reaction. The three-dimensional (3D) computational fluid dynamics (CFD) numerical simulation was employed to study the emission formation process and mechanism, and the effects of high-pressure air jet temperature and duration on emissions were also investigated. The simulation results showed that the NOx formation is mainly affected by the first-stage high-temperature reaction due to the higher reaction temperature. Overall, this combustion mode can obtain ultra-low NOx emission. The second-stage high-temperature reaction plays an important role in the CO and THC formation caused by the mixing effect of the high-pressure air and original in-cylinder mixture. The increasing air jet temperature leads to a larger high-temperature in-cylinder region and more fuel in the first-stage reaction, and therefore resulting in higher NOx emission. However, the increasing air jet temperature can significantly reduce the CO and THC emissions. For the air jet duration comparisons, both too short and too long air jet durations could induce higher NOx emission. A higher air jet duration would result in higher CO emission due to the more high-pressure air jet with relatively low temperature.


Fuel ◽  
2021 ◽  
Vol 283 ◽  
pp. 119323
Author(s):  
Xiangyu Meng ◽  
Hua Tian ◽  
Jiangping Tian ◽  
Wuqiang Long ◽  
Mingshu Bi

Sign in / Sign up

Export Citation Format

Share Document