Dynamic Material Characterization Using Digital Image Correlation

2014 ◽  
Vol 566 ◽  
pp. 3-9
Author(s):  
Amos Gilat ◽  
Jeremy D. Seidt

Digital Image Correlation is a non-contact optical technique for measuring the full-field deformation on the surface of a deforming specimen. The technique was initially used in quasi-static experiments, but with the development of high speed digital cameras is used also in dynamic experiments. This use of the Digital Image Correlation technique in several dynamic experiments is presented. This includes the compression and tensile split Hopkinson bar tests, a shear test for specimens made of sheet metal, a dynamic punch test, tensile test of Kevlar cloth and Kevlar yarn, and an intermediate strain rate test in compression.

2011 ◽  
Vol 70 ◽  
pp. 135-140 ◽  
Author(s):  
G. Le Louëdec ◽  
M.A. Sutton ◽  
Fabrice Pierron

Welding is one of the most popular joining technologies in industry. Depending on the materials to be joined, the geometry of the parts and the number of parts to be joined, there is a wide variety of methods that can be used. These joining techniques share a common feature: the material in the weld zone experiences different thermo-mechanical history, resulting in significant variations in material microstructure and spatial heterogeneity in mechanical properties. To optimize the joining process, or to refine the design of welded structures, it is necessary to identify the local mechanical properties within the different regions of the weld. The development of full-field kinematic measurements (digital image correlation, speckle interferometry, etc.) helps to shed a new light on this problem. The large amount of experimental information attained with these methods makes it possible to visualize the spatial distribution of strain on the specimen surface. Full-field kinematic measurements provide more information regarding the spatial variations in material behaviour. As a consequence, it is now possible to quantify the spatial variations in mechanical properties within the weld region through a properly constructed inverse analysis procedure. High speed tensile tests have been performed on FSW aluminium welds. The test was performed on an MTS machine at a cross-head speed of up to 76 mm/s. Displacement fields were measured across the specimen by coupling digital image correlation with a high-speed camera (Phantom V7.1) taking 1000 frames per second. Then, through the use of the virtual fields method it is possible to retrieve the mechanical parameters of the different areas of the weld from the strain field and the loading. The elastic parameters (Young’s modulus and Poisson’s ratio) are supposed to be constant through the weld. Their identification was carried out using the virtual fields method in elasticity using the data of the early stage of the experiment. Assuming that the mechanical properties (elastic and plastic) of the weld are constant through the thickness, the plastic parameters were identified on small sections through the specimen, using a simple linear hardening model. This method leads to a discrete identification of the evolution of the mechanical properties through the weld. It allows the understanding of the slight variations of yield stress and hardening due to the complexity of the welding process.


2008 ◽  
Vol 130 (4) ◽  
Author(s):  
S. B. Park ◽  
Chirag Shah ◽  
Jae B. Kwak ◽  
Changsoo Jang ◽  
Soonwan Chung ◽  
...  

In this work, a new experimental methodology for analyzing the drop impact response is assessed using a pair of high-speed digital cameras and 3D digital image correlation software. Two different test boards are subjected to Joint Electron Device Engineering Council (JEDEC) standard free-fall impact conditions of half-sine pulse of 1500 G in magnitude and 0.5 ms in duration. The drop is monitored using a pair of synchronized high-speed cameras at a rate of up to 15,000 frames per second. The acquired images are subsequently analyzed to give full-field dynamic deformation, shape, and strain over the entire board during and after impact. To validate this new methodology for analyzing the impact response, the in-plane strain as well as the out-of-plane acceleration at selected locations were measured simultaneously during the drop using strain gauge and accelerometers and were compared with those obtained using high-speed cameras and 3D digital image correlation presented in this paper. Comparison reveals excellent correlation of the transient behavior of the board during impact and confirms the feasibility of using the full-field measurement technique used in this study.


Aerospace ◽  
2005 ◽  
Author(s):  
Helena (Huiqing) Jin ◽  
Wei-Yang Lu ◽  
Jeff Chames ◽  
Nancy Yang

A new experimental technique was developed to characterize the mechanical properties of LIGA (an acronym from German words for lithography, electroplating, and molding) materials. An advanced imaging capability, scanning electron microscopy (SEM), with an integrated loading stage allows the acquisition of in situ microstructural images at the micro scale during loading. The load is measured directly from a load cell, and the displacement field is calculated from the SEM images based on the digital image correlation (DIC) technique. The DIC technique is a full-field deformation measurement technique which obtains displacement fields by comparing random speckle patterns on the specimen surface before and after deformation. The random speckle patterns are typically generated by applying a thin layer of material with high contrast to a specimen surface. Alternatively, DIC can also be applied using the microstructural features of a surface as texture patterns for correlation. DIC technique is ideally suited to characterize the deformation field of MEMS structures without the need to generate a random speckle pattern, which can be very challenging on the micro and nanoscale. In this paper, the technique is experimentally demonstrated on a LIGA specimen. The digital images showing LIGA surface features acquired during the loading can serve as random patterns for the DIC method. Therefore, full-field displacement and strain can be obtained directly on the specimen and the errors incurred by the testing system can be eliminated.


2014 ◽  
Vol 611 ◽  
pp. 496-500 ◽  
Author(s):  
Róbert Huňady ◽  
Martin Hagara ◽  
František Šimčák

The paper deals with measurements of modal parameters using high-speed digital image correlation and assesses how the size of image elements (facets) influences the accuracy of modal parameters of the analyzed structure. The facet size is an important parameter that significantly affects the correlation process and its results. In the paper the experimental modal analysis of steel circular plate that has been excited by the impact hammer is described. Correlation system Q-450 Dantec Dynamics was used to measure the responses of the analyzed structure.


2011 ◽  
Vol 70 ◽  
pp. 81-86 ◽  
Author(s):  
Fabrice Pierron ◽  
Rachid Cheriguene ◽  
Pascal Forquin ◽  
Raphael Moulart ◽  
Marco Rossi ◽  
...  

This paper compares the technology and the performances of three ultra high speed cameras for full-field deformation measurements with Digital image correlation or the grid method. The three cameras are based on multiple CCD sensors (Cordin 550-62, with rotating mirror or DRS IMACON 200 with gated intensified CCDs) or dedicated chip (Shimadzu HPV). The advantages and limitations of these cameras are critically reviewed.


Sign in / Sign up

Export Citation Format

Share Document