Optimization of Products Yields from the Pyrolysis of Palm Kernel Shells Using Response Surface Methodology

2014 ◽  
Vol 575 ◽  
pp. 13-16
Author(s):  
E.B. Lucas ◽  
O.E. Itabiyi ◽  
O.O. Ogunleye

This work focussed on the optimisation of product yields from the pyrolysis of palm kernel shells (PKS). 479g of dried PKS were loaded into the retort and then placed inside the furnace chamber and this was pyrolysed at 300, 400, 500, 600 and 700°C. The pyrolysis products obtained are char, tar (pyro oil and pyroligneous acid) and gas. A full factorial design (FFD) consisting two factors (Temperature and duration of pyrolysis) at three level was used to study the pattern of product yields from the pyrolysis of PKS. Char, tar and gas were evaluated as the responses. Thirteen experimental runs resulted from the FFD with a minimum product yield of 0.9wt% and maximum product yield of 99wt%. Response surface methodology was used to analyse the results of the FFD of the product yields of PKS. The optimum conversion yields expressed as a percentage of oven-dried weight of palm kernel shells of char, tar and gas products at their respective pyrolysing temperatures were 99wt% char at 304°C, 35wt% tar at 700°C and 39% gas at 700°C. The duration for the pyrolysis process was 20mins for 479g of dried palm kernel shells. The results of the work show that palm kernel shells can be readily pyrolised to obtain optimum yield of gas, tar (mixture of pyrolitic oil and pyroligneous acid) and char.

2007 ◽  
Vol 109 (2) ◽  
pp. 107-119 ◽  
Author(s):  
Chee Tein Low ◽  
Rosfarizan Mohamad ◽  
Chin Ping Tan ◽  
Kamariah Long ◽  
Rosnah Ismail ◽  
...  

2021 ◽  
Vol 10 (1) ◽  
pp. 1
Author(s):  
I Gusti Ngurah Bagus Pranantha Bistara K ◽  
I Ketut Suter ◽  
Gusti Ayu Kadek Diah Puspawati

The research was conducted to obtain the optimum of ethanol concentration and comparison of material with ethanol to produced beluntas leaves extract that had the highest antioxidant activiy. Response Surface Methodology (RSM) was used for optimization of extraction conditions with experimental design was a Central Composite Design (CCD) in two factors, namely ethanol concentration and comparison of material with ethanol. The results showed that the optimum conditions of beluntas leaves extraction were at ethanol concentration 62.71% and the comparison of material with ethanol 1:10.14. In this condition, the highest antioxidant activity was obtained at 65.80% with IC50, extract yield, total flavonoid content, and total tannin content were 3.87 ppm, 18.20% dry weight extract, 47.05 mg QE/g dry weight extract, and 9.11 mg TAE/g dry weight extract, respectively.


2019 ◽  
Vol 16 (3) ◽  
pp. 398-404 ◽  
Author(s):  
Yang Zou ◽  
Jingyi Fei ◽  
Liangzhe Chen ◽  
Qingfeng Dong ◽  
Houbin Li

Background: 3,3,7,7-tetrakis (difluoramino) octahydro-1,5-dinitro-1,5-diazocine (HNFX), as an important oxidizer in propellants, has received much attention due to its high density and energy. However, there are many difficulties that need to be solved, such as complex synthetic processes, low product yield, high cost of raw materials and complicated purification. In the synthesis of HNFX, the intermediate named 1,5-bis (p-toluenesulfonyl)-3,7-dihydroxyoctahydro-1, 5-diazocine (gem-diol), is difficult to synthesize. Methods: A simple method was used to synthesize the gem-diol. This prepared gem-diol was characterized by FT-IR, 1H NMR, melting point and mass spectrometry. In order to increase the yield of gem-diol, response surface methodology (RSM) was introduced to optimize experimental conditions. Results: After the establishment of the model, the optimal conditions of synthesis were found to be 9.33h for reaction time, 6.13wt. % for the concentration of NaOH and 1.38:1 for ratio of ECH (p-toluenesulfonamide): TCA (epichlorohydrin). Under the optimal conditions, the experimental value and the predicted value of yield were 22.18% and 22.92%, respectively. Conclusion: 1,5-bis (p-toluenesulfonyl)-3,7-dihydroxyoctahydro-1,5-diazocine (gem-diol) can be synthesized using the low cost of chemical materials, including p-toluenesulfonamide, epichlorohydrin, sodium hydroxide and ethanol. Response surface methodology (RSM) is an effective method to optimize the synthesis process, thereby improving the yield of gem-diol.


2015 ◽  
Vol 761 ◽  
pp. 358-363 ◽  
Author(s):  
Qumrul Ahsan ◽  
Noraiham Mohamad ◽  
Soh Tiak Chuan

Mechanical properties of an industrial based rubber mat compound were optimized via response surface methodology (RSM). Interaction between two factors: accelerators (0.04-3.50 phr) and fillers (0-18.29 phr) were investigated using a full factorial design. The accelerators consisted of a combination of mercaptobenzothiazole disulphide (MBTS) as the primary accelerator, and diphenyl guanidine (DPG) and Zn-2-mercaptobenzo thiazole (ZMBT) as the secondary accelerators. Meanwhile, silane functionalized hybrid precipitated silica/calcined clay (f-PSi/ClCy) was used as the fillers. Regression models for optimum mechanical properties against the accelerator and filler factors were generated by Design Expert software. It was recommended that the level of accelerators and fillers at 1.77 phr and 0.65 phr as the optimum parameter to achieve tensile strength of ~14 MPa and ~2 N/mm, respectively. Further, a comparison between the recommended formulation and the original rubber mat formulation affirmed that the mechanical properties via statistical design were in good agreement with the experimental results with deviations of only + 8.8 % and 0 % for tensile strength and tear strength respectively.


2018 ◽  
Vol 279 ◽  
pp. 235-239 ◽  
Author(s):  
Nguyen Phu Thuong Nhan ◽  
Tran Thien Hien ◽  
Le Thi Hong Nhan ◽  
Phan Nguyen Quynh Anh ◽  
Le Tan Huy ◽  
...  

Response Surface Methodology (RSM) is used to optimize the conditions of the saponification reaction (Concentration of alkaline solution (%), temperature (°C) and reaction time (hour)). Level of foaming and durability of the emulsion (cleaning ability) from the product of the saponification reaction are two factors to evaluate the optimization process by RSM. After optimization, the alkaline solution concentration is 11%, the reaction was carried out for 2.5-3 hours at 85°C for the highest level of foaming and the most prolonged durability of the emulsion. This parameter was compared with the experiment, and the results showed that there was no significant error, this proves that the RSM model has good repeatability, can optimally correct and is essential in optimizing the survey parameters.


2013 ◽  
Vol 55 ◽  
pp. 357-365 ◽  
Author(s):  
Muhammad 'Azim Jamaluddin ◽  
Khudzir Ismail ◽  
Mohd Azlan Mohd Ishak ◽  
Zaidi Ab Ghani ◽  
Mohd Fauzi Abdullah ◽  
...  

2018 ◽  
Vol 4 (2) ◽  
Author(s):  
Hisworo Ramdani ◽  
Noli Novidahlia ◽  
Ulif Yuhana

The aims of the research were to determine the optimum condition of  submerging time in 2% CaCl2 and various sugar solutions on sweetened dried red chili characteristics using Response Surface Methodology (RSM). Red chili were  submerged in 2% CaCl2 for 8, 10, 15, 20, and 22 minutes, and in 56%, 60% 70%, 80% and 84% sugar solutions.  The output combination of two factors are 13 run units.  The analysis included physics (color), chemical (moisture, vitamin C, total sucrose), hedonic test (color, taste, texture), descriptive test (color, sweetness, spiciness, texture).  The results showed that submerged time in 2% CaCl2 had significant effect on sweetness of sweetened dried red chili. The optimal condition processing of sweetened dried red chili was reached on combination of submerged time in 2% CaCl2 8 minutes and in 74% sugar solution with chroma 21.16, moisture 8.88 % db, vitamin C 9.34 mg/100 g, total sucrose  50°Brix,  hedonic score: color 5.03 (rather like), taste 4.43 (neutral), texture 4.42 (neutral), and descriptive sensory: color 5.24 (rather red), sweetness 4.05 (neutral), spiciness 5.05 (rather spicy), and texture 4.53 (rather rubbery).Keywords: optimization, sweetened, red chili, RSM


Sign in / Sign up

Export Citation Format

Share Document