Strength Degeneration of SRUHSC Column to RC Beam Joint Subjected to Reversal Cycle Load

2014 ◽  
Vol 578-579 ◽  
pp. 580-583
Author(s):  
Chang Wang Yan ◽  
Ju Zhang ◽  
Shu Guang Liu ◽  
Yong Yang

In order to investigate the strength degeneration of SRUHSC column to RC beam joint subjected to reversal cycle load, six interior joint specimens were designed basing on half-scale model of prototype joint used in high-rise buildings. A reversal cycle loading test was carried out and test parameters included various axial load ratio and volumetric stirrup ratio. Strength degeneration of SRUHSC column to RC beam joint was described. A discussion on relations between λj and applied axial load ratio or volumetric stirrup ratio was presented. It was found that strength of all the joints degenerated in every displacement and degenerated more quickly with the increment of displacement during the reversal cycle loading, and that the strength of all the joints degenerated fast with the increment of applied axial load ratio and slowly with the increment of volumetric stirrup ratio. The experimental results indicated that test parameters had obvious influence on the strength degeneration of SRUHSC column to RC beam joint subjected to reversal cycle load.

2013 ◽  
Vol 376 ◽  
pp. 231-235
Author(s):  
Cheng Li ◽  
Yun Zou ◽  
Jie Kong ◽  
Zhi Wei Wan

Nonlinear numerical analysis for the force performance of frame middle joint is processed in this paper with the finite element software of ABAQUS. Compared with experimental results, numerical analysis results are found to be reasonable. Then the influence of factors such as shaped steel ratio and axial-load ratio are contrastively analyzed. The results show that shaped steel ratio has a greater influence on the bearing capacity and hysteretic performance of the structure, but the axial-load ratio has less influence.


2010 ◽  
Vol 152-153 ◽  
pp. 1125-1128
Author(s):  
Ju Zhang ◽  
Chang Wang Yan ◽  
Jin Qing Jia

In order to investigate the crack pattern of steel reinforced ultra high strength concrete (SRUHSC) column and steel reinforced concrete (SRC) beam joint subjected to reversal cycle load, six interior joint specimens were tested with various axial load ratio and volumetric stirrup ratio. A discussion on the ductility and crack pattern was presented. It was found that all joint specimens failed in shear fracture in the joint core regions and that axial load ratio had more influence on the crack resistance capacity. The experimental results indicated that test parameters of SRUHSC column and SRC beam joint with good crack resistance performance may be referred for engineering application.


2010 ◽  
Vol 44-47 ◽  
pp. 3884-3887
Author(s):  
Ju Zhang ◽  
Chang Wang Yan ◽  
Jin Qing Jia

In order to investigate the crack pattern and ductility of connection composed of cross shaped steel encased ultra high strength concrete (CSSEUHSC) columns and reinforced concrete (RC) beams subjected to reversal cycle load, six interior connection specimens were tested with various axial load ratio and volumetric stirrup ratio. A discussion on the ductility and crack pattern was presented. It was found that cracks appeared in the connection core regions and at the beam end for all specimens, and that axial load ratio had more influence on the crack resistance capacity. The experimental results indicated that test parameters of connection composed of CSSEUHSC columns and RC Beams with good crack resistance performance may be referred for engineering application.


2012 ◽  
Vol 166-169 ◽  
pp. 1746-1751
Author(s):  
Kai Ze Ma

Based on the experimental results of twenty three high strength concrete-filled square steel tubular (HCFT) columns subjected to cyclic lateral load, the restoring force model of square HCFT columns is established. Through theoretical analysis and experimental results, the main parameters of the restoring force model which are axial load ratio, confinement effect coefficient as well as slenderness ratio are discussed. The theoretical method is put forward. The results show that the relation of elastic stiffness to degraded stiffness, the relation of ultimate bearing capacity to yielding loads are proportional with confinement effect coefficient, and inversely with axial load ratio as well as slenderness ratio. Many various influential factors are considered in the restoring force model of square HCFT columns. The model is close to the experimental results which can be conveniently applied for nonlinear dynamics analysis of composite structures.


2014 ◽  
Vol 578-579 ◽  
pp. 936-939 ◽  
Author(s):  
Qian Qian Sun ◽  
Yun Zou ◽  
Qiang Wang

Nonlinear numerical analysis of the stress performance of SRC-RC transfer columns was carried out in this paper with the finite element software of ABAQUS. Compered with the experimental result , numerical analysis result are found to be reasonable.Then the influence of factors such as extension length of shape steel , area ratio of shape steel and axial-load ratio were contrastively analyzed . The results show that extension length of shape steel and the area ratio of shape steel have a greater influence on the bearing capacity and the hysteretic performance of transfer column ,but axial-load ratio has less influence .


2011 ◽  
Vol 243-249 ◽  
pp. 149-155 ◽  
Author(s):  
Zhe Li ◽  
Shao Ji Chen ◽  
Ye Ni Wang ◽  
Cui Ping Zhang ◽  
Jing Xu

The neutral axis change along with axial load ratio, load angle, section size etc. For the neutral axis of SRCLSC(steel reinforced concrete L-shaped column) is neither plumb with the plane that the moment work on, nor parallel with borderlines of SRCLSC section, it is difficult to get loading capacity and ductility of SRCLSC on biaxial eccentric loading. Based on the plane-section assumption, a method for the nonlinear analysis of complete response process for ductility of 15 SRCLSC..It include 36 sets for load angle, 6 sets for axial load ratio, 3 sets for concrete strength, 3 sets for the content of steel, 2 sets for steel style, 3 sets for stirrup ratio, 3 sets for steel location, 3 sets for section size, 3 sets for stirrup diameter about SRCLSC. The ductile behavior of L-shaped, with calculating 1068 loading conditions,are investigated. It concluded that axial load ratio, load angle, and ratio of the spacing of stirrups and longitudinal reinforcement’s diameter (s/d) are most important factors.


Author(s):  
Masayuki Haraguchi ◽  
Masae Kido ◽  
Keigo Tsuda

The objective of this study is to examine the ultimate strength of CFT columns. The range of the axial load ratio and the slenderness ratio in which CFT beam-columns reach the full plastic moment are examined on the basis of the strength formulas specified by AIJ Recommendation for Limit State Design of Steel Structures. The CFT columns are subjected to the constant axial compressive force and the monotonic moment at the one end, as the analytical parameters the axial load ratio and slenderness ratio are selected. The analysis is carried out by the shooting method. Bending moment-rotational angle relationships are calculated by the shooting method and the maximum strengths of CFT columns are obtained. When the value obtained by multiplying the axial load ratio and the second power of the slenderness ratio is 0.05, the maximum strength reach 95% of the full plastic moment under the condition that the axial load ratio value is less than or equal to 0.75. When the value obtained by multiplying the axial load ratio and the second power of the slenderness ratio is 0.1, the maximum strength reach 95% of the full plastic moment under the condition that the axial load ratio value is less than or equal to 0.5.


2010 ◽  
Vol 163-167 ◽  
pp. 1540-1546
Author(s):  
Liang Bai ◽  
Tian Hua Zhou ◽  
Xing Wen Liang

The cyclic loading test of three steel high performance concrete(SHPC) structural walls was conducted and the failure pattern of the structural walls under the combined effect of axial force, bending moment, and shear force was researched. Based on the experimental results, the displacement-based deformation capacity design method was proposed for SHPC structural walls. It is obtained for the interrelated relationships among the ultimate drift ratio, the axial load ratio, the characteristic value of stirrup content and the aspect ratio. It is concluded that the increasing the characteristic value of stirrup content and limiting the axial load ratio were effective means to improve ductility. The characteristic value of stirrup content of SHPC structural walls with different ultimate drift ratio and axial load ratio were proposed and the conclusion can be referred by the design of SHPC structural walls.


Sign in / Sign up

Export Citation Format

Share Document