Vibration Analysis and Human Comfort Evaluation of Underground Hydropower House

2014 ◽  
Vol 580-583 ◽  
pp. 2055-2062
Author(s):  
Dan Fu ◽  
He Gao Wu

Human comfort is of great importance to main powerhouse and vibration level should be controlled below the human comfort limit. Comparison of ISO2631/1-1985 and ISO2631/1-1997 was performed firstly in this study. It points out that weighted root-mean-square acceleration is basic variable for vibration evaluation. The reduced comfort boundary of 2 hours (0.260m/s2) in 1985 version is very close to the comfort threshold (0.315m/s2) in 1997 version. Above two values were selected as human comfort standard in this paper. After that, 3D dynamic finite element model of HongPing pumped storage station was established and vibration analysis under pressure fluctuations was conducted using time history method. The calculation results indicated that vibration of generator floor was mainly caused by the multiples of runner blade number frequency. Vibration level of generator floor would not lead to human discomfort.

2012 ◽  
Vol 226-228 ◽  
pp. 176-180
Author(s):  
Jing Zhang ◽  
Bin Zhang ◽  
Ying Hua Liu ◽  
Long Qi Wang ◽  
Yu Bin Wu

Field tests were carried out on Sihui metro depot of Beijing metro line 1 and its superstructure. The acceleration time history of sleepers and floors of the building was obtained, and the waves-propagation laws of building were studied through the tests. Test analysis shows that the structure vibrations show zigzag tendencies ascends with the height of the building. Based on current situation of Sihui metro depot, a metro-soil-building 3-dimensional finite element model is established on ANSYS. By using actual acceleration of sleepers as inputs, the dynamic responds rule of the superstructure is obtained. Compared calculation results with the experimental results, the given numerical model can predict the vibrations of the building induced by moving trains quite well. This method can provide guidance and technical support for future development of superstructure.


2013 ◽  
Vol 303-306 ◽  
pp. 2893-2897
Author(s):  
Yu Bin Wu ◽  
Bin Zhang ◽  
Ying Hua Liu ◽  
Xian Hui Li

In recent years, more attention had paid to the vibration and noise influence on nearby building caused by passing trains. The metro depot superstructure is directly built above the train garage, the vibration of superstructure is very serious when the trains get into or go out of the garage. In order to investigate the law of vibration influence on metro depot and superstructure, a field measurement has been carried out and a 3D finite element model of building-platform-column is established. The attenuation law and degree of environmental vibration influence is obtained by analyzing the measurement date and calculation results. The results show that the vibration response of superstructure is obvious, the vibration level is related with the running state of train. The vibration response is more serious when trains pull out of the garage than go into garage, because the running speed is faster when trains pull out of garage. The vibration intensity does not monotonically increase or monotonically reduce with the increasing of floor and it tends to change wave upon wave with the increasing of floor.


2013 ◽  
Vol 295-298 ◽  
pp. 2049-2053
Author(s):  
Yun Zhang ◽  
Bei Li ◽  
Liu Bin Yan

Taking a typical continuous girder bridge for example, the text builds spatial beam finite element model. By nonlinear time history analysis method, it analyzes bridge transverse pounding and the retainer strength in different strength levers earthquake. According to bridge pier failure and fragility theory and retainer section moment-curvature analysis, it puts forward retainer failure types in different strength levers earthquake. The calculation results show that it is irrational to design retainer section and reinforcement based on structure requirement. The structural retainer failure types have uncertainty without considering bridge seismic fortification goal. Though it appears on ductility failure, the damage state is very serious.


Vibration ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 422-445
Author(s):  
Md Riasat Azim ◽  
Mustafa Gül

Railway bridges are an integral part of any railway communication network. As more and more railway bridges are showing signs of deterioration due to various natural and artificial causes, it is becoming increasingly imperative to develop effective health monitoring strategies specifically tailored to railway bridges. This paper presents a new damage detection framework for element level damage identification, for railway truss bridges, that combines the analysis of acceleration and strain responses. For this research, operational acceleration and strain time-history responses are obtained in response to the passage of trains. The acceleration response is analyzed through a sensor-clustering-based time-series analysis method and damage features are investigated in terms of structural nodes from the truss bridge. The strain data is analyzed through principal component analysis and provides information on damage from instrumented truss elements. A new damage index is developed by formulating a strategy to combine the damage features obtained individually from both acceleration and strain analysis. The proposed method is validated through a numerical study by utilizing a finite element model of a railway truss bridge. It is shown that while both methods individually can provide information on damage location, and severity, the new framework helps to provide substantially improved damage localization and can overcome the limitations of individual analysis.


2012 ◽  
Vol 430-432 ◽  
pp. 828-833
Author(s):  
Qiu Sheng Ma ◽  
Yi Cai ◽  
Dong Xing Tian

In this paper, based on ANSYS the topology optimization design for high pressure storage tank was studied by the means of the finite element structural analysis and optimization. the finite element model for optimization design was established. The design variables influence factors and rules on the optimization results are summarized. according to the calculation results the optimal design result for tank is determined considering the manufacturing and processing. The calculation results show that the method is effective in optimization design and provide the basis to further design high pressure tank.


2003 ◽  
Vol 17 (5) ◽  
pp. 679-690 ◽  
Author(s):  
Dong-Woohn Kim ◽  
Jin Koo Lee ◽  
No-Cheol Park ◽  
Young Pil Park

2017 ◽  
Vol 893 ◽  
pp. 380-383
Author(s):  
Jun Xia ◽  
Z. Shen ◽  
Kun Liu

The tapered cross-section beams made of steel-concrete composite material are widely used in engineering constructions and their dynamic behavior is strongly influenced by the type of shear connection jointing the two different materials. The 1D high order finite element model for tapered cross-section steel-concrete composite material beam with interlayer slip was established in this paper. The Numerical results for vibration nature frequencies of the composite beams with two typical boundary conditions were compared with ANSYS using 2D plane stress element. The 1D element is more efficient and economical for the common tapered cross-section steel-concrete composite material beams in engineering.


Sign in / Sign up

Export Citation Format

Share Document