Effect of Offset Distance on Cutting Forces and Heat Generation in Multi-Tool Turning Process

2014 ◽  
Vol 592-594 ◽  
pp. 211-215 ◽  
Author(s):  
R. Kalidasan ◽  
M. Yatin ◽  
D.K. Sarma ◽  
S. Senthilvelan

Productivity enhancement assumes a paramount importance in today’s competitive industrial world. The aim of this work is to improve productivity in a conventional lathe with two single point cutting tools machining a workpiece simultaneously. An additional tool holding fixture is fabricated and integrated so that distance between the two cutting tools can be varied and has a provision to provide individual depth of cut. Experiments were performed on gray cast iron workpiece at different offset distances between the cutting tools, at a particular cutting speed, feed rate and depth of cut. In the multi-tool turning process, lagging rear cutting tool experiences lesser cutting force than leading front cutting tool. This behaviour is due to the machining of front cutting tool preheat as well as reduction of effective cutting speed while machining with rear cutting tool. With increase in offset distance, moment acting on the work piece contributes to increase in resistance against machining and hence front tool experiences higher force than rear cutting tool.

2021 ◽  
Author(s):  
Hüseyin Gürbüz ◽  
Şehmus Baday

Abstract Although Inconel 718 is an important material for modern aircraft and aerospace, it is a kind material, which is known to have low machinability. Especially, while these types of materials are machined, high cutting temperatures, BUE on cutting tool, high cutting forces and work hardening occur. Therefore, in recent years, instead of producing new cutting tools that can withstand these difficult conditions, cryogenic process, which is a heat treatment method to increase the wear resistance and hardness of the cutting tool, has been applied. In this experimental study, feed force, surface roughness, vibration, cutting tool wear, hardness and abrasive wear values that occurred as a result of milling of Inconel 718 material by means of cryogenically treated and untreated cutting tools were investigated. Three different cutting speeds (35-45-55 m/min) and three different feed rates (0.02-0.03-0.04 mm/tooth) at constant depth of cut (0.2 mm) were used as cutting parameters in the experiments. As a result of the experiments, lower feed forces, surface roughness, vibration and cutting tool wear were obtained with cryogenically treated cutting tools. As the feed rate and cutting speed were increased, it was seen that surface roughness, vibration and feed force values increased. At the end of the experiments, it was established that there was a significant relation between vibration and surface roughness. However, there appeared an inverse proportion between abrasive wear and hardness values. While BUE did not occur during cryogenically treated cutting tools, it was observed that BUE occurred in cutting tools which were not cryogenically treated.


2011 ◽  
Vol 223 ◽  
pp. 554-563 ◽  
Author(s):  
Noemia Gomes de Mattos de Mesquita ◽  
José Eduardo Ferreira de Oliveira ◽  
Arimatea Quaresma Ferraz

Stops to exchange cutting tool, to set up again the tool in a turning operation with CNC or to measure the workpiece dimensions have direct influence on production. The premature removal of the cutting tool results in high cost of machining, since the parcel relating to the cost of the cutting tool increases. On the other hand the late exchange of cutting tool also increases the cost of production because getting parts out of the preset tolerances may require rework for its use, when it does not cause bigger problems such as breaking of cutting tools or the loss of the part. Therefore, the right time to exchange the tool should be well defined when wanted to minimize production costs. When the flank wear is the limiting tool life, the time predetermination that a cutting tool must be used for the machining occurs within the limits of tolerance can be done without difficulty. This paper aims to show how the life of the cutting tool can be calculated taking into account the cutting parameters (cutting speed, feed and depth of cut), workpiece material, power of the machine, the dimensional tolerance of the part, the finishing surface, the geometry of the cutting tool and operating conditions of the machine tool, once known the parameters of Taylor algebraic structure. These parameters were raised for the ABNT 1038 steel machined with cutting tools of hard metal.


2020 ◽  
Vol 17 (2) ◽  
pp. 961-966
Author(s):  
Allina Abdullah ◽  
Afiqah Azman ◽  
B. M. Khirulrizwan

This research outlines an experimental study to determine the optimum parameter of cutting tool for the best surface roughness (Ra) of Aluminum Alloy (AA) 6063. For the experiment in this research, cutting parameters such as cutting speed, depth of cut and feed rate are used to identify the effect of both cutting tools which are tungsten carbide and cermet towards the surface roughness (Ra) of material AA6063. The machining operation involved to cut the material is turning process by using Computer Numerical Control (CNC) Lathe machine. The experimental design was designed by Full Factorial. The experiment that had been conducted by the researcher is 33 with 2 replications. The total number of the experiments that had been run is 54 runs for each cutting tool. Thus, the total number of experiments for both cutting tools is 108 runs. ANOVA analysis had been analyzed to identify the significant factor that affect the Ra result. The significant factors that affect the Ra result of AA6063 are feed rate and cutting speed. The researcher used main effect plot to determine the factor that most influenced the surface roughness of AA6063, the optimum condition of surface roughness and the optimum parameter of cutting tool. The factor that most influenced the surface roughness of AA6063 is feed rate. The optimum condition of surface roughness is at the feed rate of 0.05 mm/rev, cutting speed of 600 rpm and depth of cut of 0.10 mm. While the optimum parameter of cutting tool is cermet insert with the lowest value of surface roughness (Ra) result which is 0.650 μm.


2016 ◽  
Vol 16 ◽  
pp. 7-15 ◽  
Author(s):  
Nirmal Kumar Mandal ◽  
Tanmoy Roy

Abstract. Kinetic energy of a machining process is converted into heat energy. The generated heat at cutting tool and work piece interface has substantial impact on cutting tool life and quality of the work piece. On the other hand, development of advanced cutting tool materials, coatings and designs, along with a variety of strategies for lubrication, cooling and chip removal, make it possible to achieve the same or better surface quality with dry or Minimum Quantity Lubrication (MQL) machining than traditional wet machining. In addition, dry and MQL machining is more economical and environment friendly. In this work, 20 no. of experiments were carried out under dry machining conditions with different combinations of cutting speed, feed rate and depth of cut and corresponding cutting temperature and surface roughness are measured. The no. of experiments is determined through Design of Experiments (DOE). Nonlinear regression methodology is used to model the process using Response Surface Methodology (RSM). Multi-objective optimization is carried using Genetic Algorithm which ensures high productivity with good product quality.


2014 ◽  
Vol 616 ◽  
pp. 292-299
Author(s):  
Ján Duplák ◽  
Peter Michalik ◽  
Miroslav Kormoš ◽  
Slavko Jurko ◽  
Pavel Kokuľa ◽  
...  

Durability of cutting tools represent to a large spectral index on the basis of which is characterized by functional work. Every manufacturer of cutting tools before the actual production of these tools during the development make a tests and prescribing them characteristics on which is possible then to predict their behavior in the actual production process. It might be argued, that these information are optimized and ideal and therefore the information which producers sells by these cutting tools, do not correspond completely with their real behavior. It is necessary that information by using experiments to verify and then review their informative value and correctness. Durability of cutting tools is often indicated for one tested material of marketing aspect, which is machined and effort of user is to achieve this variable for other machined materials, then is happened problem in the production. The problem is very short lifetime of cutting tool in machining process, where the effect is impossibility to optimize the machining process. The results of this action are excesses time caused by exchanged of cutting plate and then it is make a low production of machining industry by setting of machines, and then the factory has an economical loses. This article is focused on tested of cutting tools made by sintered carbide, where the machine material is steel 100CrMn6. This type of steel is used by manufacturer of bearings, therefore the experimental part of this article should be a helper for machining manufactures, which make effectively manage with tools by optimization of cutting parameters of cutting tools and thus increase their productivity and to achieve a higher profits.


SINERGI ◽  
2020 ◽  
Vol 24 (3) ◽  
pp. 171
Author(s):  
Sobron Yamin Lubis ◽  
Sofyan Djamil ◽  
Yehezkiel Kurniawan Zebua

In the machining of metal cutting, cutting tools are the main things that must be considered. Using improper cutting parameters can cause damage to the cutting tool. The damage is Built-Up Edge (BUE). The situation is undesirable in the metal cutting process because it can interfere with machining, and the surface roughness value of the workpiece becomes higher. This study aimed to determine the effect of cutting speed on BUE that occurred and the cutting strength caused. Five cutting speed variants are used. Observation of the BUE process is done visually, whereas to determine the size of BUE using a digital microscope. If a cutting tool occurs BUE, then the cutting process is stopped, and measurements are made. This study uses variations in cutting speed consisting of cutting speed 141, 142, 148, 157, 163, and 169 m/min, and depth of cut 0.4 mm. From the results of the study were obtained that the biggest feeding force is at cutting speed 141 m/min at 347 N, and the largest cutting force value is 239 N with the dimension of BUE length: 1.56 mm, width: 1.35 mm, high: 0.56mm.


2016 ◽  
Vol 852 ◽  
pp. 255-259 ◽  
Author(s):  
B. Singaravel ◽  
Chimmalagi Marulaswami ◽  
Thangiah Selvaraj

Turning is one of the fundamental machining operations and its process parameters leads to better machining performance. The economic benefit of turning operation is providing components with appropriate dimensional accuracy. In this work, the effects of process parameters on dimensional accuracy (circularity and cylindricity) parameters are analyzed in turning of EN25 steel. The process parameters considered are cutting speed, feed rate and depth of cut in order to minimize circularity and cylindricity. The result revealed that the minimum dimensional accuracy error values such as circularity and cylindricity are obtained in the combination of higher value of cutting speed and lower value of feed rate and depth of cut. This analysis is used to meet the machined work piece within the tolerance limit and improve the quality criteria.


2017 ◽  
Vol 16 (03) ◽  
pp. 237-261 ◽  
Author(s):  
T. Sampath Kumar ◽  
S. Balasivanandha Prabu ◽  
T. Sorna Kumar

In the present work, the performances of TiAlN-, AlCrN- and AlCrN/TiAlN-coated and uncoated tungsten carbide cutting tool inserts are evaluated from the turning studies conducted on EN24 alloy steel workpiece. The output parameters such as cutting forces, surface roughness and tool wear for TiAlN-, AlCrN- and AlCrN/TiAlN-coated carbide cutting tools are compared with uncoated carbide cutting tools (K10). The design of experiment based on Taguchi’s approach is used to obtain the best turning parameters, namely cutting speed ([Formula: see text]), feed rate ([Formula: see text]) and depth of cut ([Formula: see text]), in order to have a better surface finish and minimum tool flank wear. An orthogonal array (L[Formula: see text] was used to conduct the experiments. The results show that the AlCrN/TiAlN-coated cutting tool provided a much better surface finish and minimum tool flank wear. The minimum tool flank wear and minimum surface roughness were obtained using AlCrN/TiAlN-coated tools, when [Formula: see text][Formula: see text]m/min, [Formula: see text][Formula: see text]mm/rev and [Formula: see text][Formula: see text]mm.


2019 ◽  
Vol 947 ◽  
pp. 160-166
Author(s):  
Nutrada Khumjeen ◽  
Somkiat Tangjitsitcharoen

The turning Process is the main processes used in automotive parts from more productivity, it requires the cutting velocity and feed rate high. And from those cutting, it causes high temperatures on cutting and a tool life of cutting tools decreased. Therefore using of cutting fluid (Coolant) is one of the commonly used methods to reduce temperatures that occur while cutting, reducing the wear of cutting tool and helps extend the tool life of the cutting tool. However, cutting fluid it's not always a good way, from the high cost and environmental problems issues. Using the MQL technique is one of the alternatives that using more nowadays to solve the above mentioned problems. This research proposed a MQL technique substitution of cutting fluid that using in the current process by applying in order to obtain the proper cutting condition for carbon steel material grade SAPH370 with the carbide cutting tool. The cutting conditions will acceptable from the minimum quantity of lubricant and the maximum of tool life of cutting tool under surface roughness (Ra) is less than 1.2 μm. The proper cutting condition determined at a feed rate of 0.10 mm/rev, a cutting speed of 300 m/min and a flow rate of 5ml/hr.


2011 ◽  
Vol 70 ◽  
pp. 333-338
Author(s):  
Roger Serra

The aim of the paper is to analyse the vibrations during a turning manufacturing process in terms of the Machine-Tool-Part unit having particularly complex dynamic characteristics. The vibratory phenomenon is influenced by many parameters like workpiece, tool overhang, cutting speed, depth of cut and feed rate. This phenomenon is not completely known yet, so the aim was to highlight its origins using two complementary approaches: numerical and experimental. Finite element calculations were carried out, in order to identify parameters which characterize vibrations in machining like structural parameters (lathe, tool holder, cutting tool, workpiece, tailstock, tool overhang ...). A design for an experiment of process parameters (depth of cut, feed and cutting speed) was used and one series of turning tests was performed. Results have shown a significant effect between these parameters on the resulting surface roughness, consumed power, cutting time and tool vibrations and a best comprehension of the process.


Sign in / Sign up

Export Citation Format

Share Document