Life Prediction of Cutting Tool by the Workpiece Cutting Condition

2011 ◽  
Vol 223 ◽  
pp. 554-563 ◽  
Author(s):  
Noemia Gomes de Mattos de Mesquita ◽  
José Eduardo Ferreira de Oliveira ◽  
Arimatea Quaresma Ferraz

Stops to exchange cutting tool, to set up again the tool in a turning operation with CNC or to measure the workpiece dimensions have direct influence on production. The premature removal of the cutting tool results in high cost of machining, since the parcel relating to the cost of the cutting tool increases. On the other hand the late exchange of cutting tool also increases the cost of production because getting parts out of the preset tolerances may require rework for its use, when it does not cause bigger problems such as breaking of cutting tools or the loss of the part. Therefore, the right time to exchange the tool should be well defined when wanted to minimize production costs. When the flank wear is the limiting tool life, the time predetermination that a cutting tool must be used for the machining occurs within the limits of tolerance can be done without difficulty. This paper aims to show how the life of the cutting tool can be calculated taking into account the cutting parameters (cutting speed, feed and depth of cut), workpiece material, power of the machine, the dimensional tolerance of the part, the finishing surface, the geometry of the cutting tool and operating conditions of the machine tool, once known the parameters of Taylor algebraic structure. These parameters were raised for the ABNT 1038 steel machined with cutting tools of hard metal.

SINERGI ◽  
2020 ◽  
Vol 24 (3) ◽  
pp. 171
Author(s):  
Sobron Yamin Lubis ◽  
Sofyan Djamil ◽  
Yehezkiel Kurniawan Zebua

In the machining of metal cutting, cutting tools are the main things that must be considered. Using improper cutting parameters can cause damage to the cutting tool. The damage is Built-Up Edge (BUE). The situation is undesirable in the metal cutting process because it can interfere with machining, and the surface roughness value of the workpiece becomes higher. This study aimed to determine the effect of cutting speed on BUE that occurred and the cutting strength caused. Five cutting speed variants are used. Observation of the BUE process is done visually, whereas to determine the size of BUE using a digital microscope. If a cutting tool occurs BUE, then the cutting process is stopped, and measurements are made. This study uses variations in cutting speed consisting of cutting speed 141, 142, 148, 157, 163, and 169 m/min, and depth of cut 0.4 mm. From the results of the study were obtained that the biggest feeding force is at cutting speed 141 m/min at 347 N, and the largest cutting force value is 239 N with the dimension of BUE length: 1.56 mm, width: 1.35 mm, high: 0.56mm.


Author(s):  
Prof. Hemant k. Baitule ◽  
Satish Rahangdale ◽  
Vaibhav Kamane ◽  
Saurabh Yende

In any type of machining process the surface roughness plays an important role. In these the product is judge on the basis of their (surface roughness) surface finish. In machining process there are four main cutting parameter i.e. cutting speed, feed rate, depth of cut, spindle speed. For obtaining good surface finish, we can use the hot turning process. In hot turning process we heat the workpiece material and perform turning process multiple time and obtain the reading. The taguchi method is design to perform an experiment and L18 experiment were performed. The result is analyzed by using the analysis of variance (ANOVA) method. The result Obtain by this method may be useful for many other researchers.


2021 ◽  
Author(s):  
Hüseyin Gürbüz ◽  
Şehmus Baday

Abstract Although Inconel 718 is an important material for modern aircraft and aerospace, it is a kind material, which is known to have low machinability. Especially, while these types of materials are machined, high cutting temperatures, BUE on cutting tool, high cutting forces and work hardening occur. Therefore, in recent years, instead of producing new cutting tools that can withstand these difficult conditions, cryogenic process, which is a heat treatment method to increase the wear resistance and hardness of the cutting tool, has been applied. In this experimental study, feed force, surface roughness, vibration, cutting tool wear, hardness and abrasive wear values that occurred as a result of milling of Inconel 718 material by means of cryogenically treated and untreated cutting tools were investigated. Three different cutting speeds (35-45-55 m/min) and three different feed rates (0.02-0.03-0.04 mm/tooth) at constant depth of cut (0.2 mm) were used as cutting parameters in the experiments. As a result of the experiments, lower feed forces, surface roughness, vibration and cutting tool wear were obtained with cryogenically treated cutting tools. As the feed rate and cutting speed were increased, it was seen that surface roughness, vibration and feed force values increased. At the end of the experiments, it was established that there was a significant relation between vibration and surface roughness. However, there appeared an inverse proportion between abrasive wear and hardness values. While BUE did not occur during cryogenically treated cutting tools, it was observed that BUE occurred in cutting tools which were not cryogenically treated.


2013 ◽  
Vol 372 ◽  
pp. 495-500
Author(s):  
Tasnim Firdaus Ariff ◽  
Mohd Syahidan Kamarudin ◽  
Mohd Amiruddin Haron

Dry machining is environmentally friendly, clean and safe to be performed. Regardless of decreasing tool life due to lack of lubricants, choosing dry machining over wet machining may be a wiser choice since the cost of purchasing and disposing the cutting fluids can contribute to a higher cost. Wear rates, tool wear intensities and material removal rates (MRR) of TiCN coated tools using both dry and traditional wet machining on brass were studied with the aim in finding the optimum cutting condition from four different cutting speeds (207, 279, 372 and 498 m/min) with two sets of cutting parameters; depth of cut and feed rate (d = 0.1 mm, f = 0.2 mm/rev and d = 0.2 mm, f = 0.4 mm/rev). Temperatures at the tool-chip interface were measured to analyze the effects of temperature rise during dry machining. Cost analysis on machining cost per piece between dry and wet machining was performed. The optimum cutting condition for wet and dry machining of brass using TiCN coated cutting tool was found to be 498 m/min at d = 0.2 mm, f = 0.4 mm/rev. The tool tip temperature obtained from dry machining did not influence tool wear since the temperature rise is quite similar to the wet machining temperatures. The machining for the dry machining reduced to about 25-76% per piece when compared with wet machining.


2020 ◽  
Vol 17 (2) ◽  
pp. 961-966
Author(s):  
Allina Abdullah ◽  
Afiqah Azman ◽  
B. M. Khirulrizwan

This research outlines an experimental study to determine the optimum parameter of cutting tool for the best surface roughness (Ra) of Aluminum Alloy (AA) 6063. For the experiment in this research, cutting parameters such as cutting speed, depth of cut and feed rate are used to identify the effect of both cutting tools which are tungsten carbide and cermet towards the surface roughness (Ra) of material AA6063. The machining operation involved to cut the material is turning process by using Computer Numerical Control (CNC) Lathe machine. The experimental design was designed by Full Factorial. The experiment that had been conducted by the researcher is 33 with 2 replications. The total number of the experiments that had been run is 54 runs for each cutting tool. Thus, the total number of experiments for both cutting tools is 108 runs. ANOVA analysis had been analyzed to identify the significant factor that affect the Ra result. The significant factors that affect the Ra result of AA6063 are feed rate and cutting speed. The researcher used main effect plot to determine the factor that most influenced the surface roughness of AA6063, the optimum condition of surface roughness and the optimum parameter of cutting tool. The factor that most influenced the surface roughness of AA6063 is feed rate. The optimum condition of surface roughness is at the feed rate of 0.05 mm/rev, cutting speed of 600 rpm and depth of cut of 0.10 mm. While the optimum parameter of cutting tool is cermet insert with the lowest value of surface roughness (Ra) result which is 0.650 μm.


Author(s):  
J. Ma ◽  
X. Ge ◽  
S. Lei

This study investigates the energy utilization and efficiency in thermally assisted machining (TAM) of a titanium alloy using numerical simulation. AdvantEdge finite element method (FEM) is used to conduct the simulation of orthogonal machining of the workpiece. Thermal boundary conditions are specified to approximate laser preheating of the workpiece material. The effects of operating conditions (preheat temperature, cutting speed, depth of cut, and rake angle) on mechanical cutting energy, preheat energy, and energy efficiency are investigated. The results show that preheating the workpiece reduces the cutting energy but increases the total energy in TAM. There is significant potential to maximize total energy efficiency in TAM by optimal design of heating strategies and machining conditions.


2011 ◽  
Vol 1298 ◽  
Author(s):  
Piyush Jaiswal ◽  
Abdul Sathar ◽  
Arshiyan Shariff ◽  
Mohammed Saif ◽  
Sukanya Dhar ◽  
...  

ABSTRACTLow-pressure MOCVD, with tris(2,4-pentanedionato)aluminum(III) as the precursor, was used in the present investigation to coat alumina on to cemented carbide cutting tools. To evaluate the MOCVD process, the efficiency in cutting operations of MOCVD-coated tools was compared with that of tools coated using the industry-standard CVD process.Three multilayer cemented carbide cutting tool inserts, viz., TiN/TiC/WC, CVD-coated Al2O3 on TiN/TiC/WC, and MOCVD-coated Al2O3 on TiN/TiC/WC, were compared in the dry turning of mild steel. Turning tests were conducted for cutting speeds ranging from 14 to 47 m/min, for a depth of cut from 0.25 to 1 mm, at the constant feed rate of 0.2 mm/min. The axial, tangential, and radial forces were measured using a lathe tool dynamometer for different cutting parameters, and the machined work pieces were tested for surface roughness. The results indicate that, in most of the cases examined, the MOCVD-coated inserts produced a smoother surface finish, while requiring lower cutting forces, indicating that MOCVD produces the best-performing insert, followed by the CVD-coated one. The superior performance of MOCVD-alumina is attributed to the co-deposition of carbon with the oxide, due to the very nature of the precursor used, leading to enhanced mechanical properties for cutting applications in harsh environment.


2010 ◽  
Vol 443 ◽  
pp. 573-581
Author(s):  
Zi Wen Zheng ◽  
Hao Feng Chen ◽  
Yi Fan Dai ◽  
Hang Gao ◽  
Gui Lin Wang ◽  
...  

Potassium Dihydrogen Phosphate (KDP) crystals are used for the key components in high power density solid-state laser for Inertial Confinement Fusion. KDP crystals are mainly machined in the dry cutting condition to avoid ‘Fogging’ of the crystals. The main difficulty identified in dry machining of KDP is chip removal from the machined surface. A vacuum sucking device based on venturi vacuum pump is used to suck the chips during cutting, and the relationship between level of vacuum in cutting zone and the comply air pressure was established. An empirical model for chip emission during turning processes is used to analyze the influence of cutting parameters on the chip emission. The influence of cutting parameters on the removal of chips is investigated. Finally, a face turning of KDP crystals is carried out with the turning parameters of feed rate 1um/rev, depth of cut of 0.8 um/rev and the cutting speed from 1.82m/s to 3.9m/s. A super-smooth surface with chips free in the whole sample is achieved, having the surface roughness of 2.994nm (Ra) measured by AFM. The surface quality achieved satisfies the requirements of KDP crystals implemented in high power lasers.


Author(s):  
Do Thi Kim Lien ◽  
Nguyen Dinh Man ◽  
Phung Tran Dinh

In this paper, an experimental study on the effect of cutting parameters on surface roughness was conducted when milling X12M steel. The cutting tool used in this study is a face milling cutter. The material that is used to make the insert is the hard alloy T15K6. The cutting parameters covered in this study include the cutting speed, the feed rate and depth of cut. The experiments are performed in the form of a rotating center composite design. The analysis shows that for both Ra and Rz: (1) the feed rate has the greatest influence on the surface roughness while the depth of cut, the cutting speed has a negligible effect on the surface roughness. (2) only the interaction between the feed rate and the depth of the cut has a significant effect on both Ra and Rz while the interaction between the cutting speed and the feed rate, the interaction between the cutting speed and the depth of cut have a negligible effect on surface roughness. A regression equation showing the relationship between Ra, Rz, and cutting parameters has also been built in this study.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Harun Gokce

Stainless steels with unique corrosion resistance are used in applications with a wide range of fields, especially in the medical, food, and chemical sectors, to maritime and nuclear power plants. The low heat conduction coefficient and the high mechanical properties make the workability of stainless steel materials difficult and cause these materials to be in the class of hard-to-process materials. In this study, suitable cutting tools and cutting parameters were determined by the Taguchi method taking surface roughness and cutting tool wear into milling of Custom 450 martensitic stainless steel. Four different carbide cutting tools, with 40, 80, 120, and 160 m/min cutting speeds and 0.05, 0.1, 0.15, and 0.2 mm/rev feed rates, were selected as cutting parameters for the experiments. Surface roughness values and cutting tool wear amount were determined as a result of the empirical studies. ANOVA was performed to determine the significance levels of the cutting parameters on the measured values. According to ANOVA, while the most effective cutting parameter on surface roughness was the feed rate (% 50.38), the cutting speed (% 81.15) for tool wear was calculated.


Sign in / Sign up

Export Citation Format

Share Document