Analysis on Galloping Responses of Transmission Tower-Line System

2014 ◽  
Vol 602-605 ◽  
pp. 3025-3028
Author(s):  
Yu Xian Di ◽  
Kuan Jun Zhu ◽  
Bin Liu ◽  
Long Liu ◽  
Cao Lan Liu

Nonlinear finite element model of a transmission tower-line system was set up and galloping of iced bundle conductors in the system was numerically simulated by means of ANSYS software. Based on galloping trajectories, vibration frequency, galloping order, conductor tension; unbalanced tension characteristics of iced conductors, it was shown that values of the conductor amplitudes by the tower-line system model are increased by 20% compared to the conductor model. The values of the strain tower unbalanced tensions by the tower-line system model are decreased by 20% and the values of the suspension tower unbalanced tensions by the tower-line system model are decreased by 62.5% compared to the conductor model conductor-insulator mode1. The galloping order is different for different span, due to the impact of the order of galloping. The amplitude of the vertical galloping is increasing while the increasing span, but it is not linear increase.

2010 ◽  
Vol 44-47 ◽  
pp. 2666-2670
Author(s):  
Li Li ◽  
Wei Jiang ◽  
Hua Jin Cao

A nonlinear finite element model of transmission tower-line coupling system including transmissions, towers and insulators is established based on ANSYS in this paper. The restarting technology is proposed to solve the vertical, horizontal and torsional galloping of the transmission conductors. Under the condition of different wind velocity, galloping of tower line system is performed to get amplitude of the transmissions and internal forces of the transmission towers. Based on the typical case, the galloping control measures of using interphase spacers and multi-point weighting are performed. Various layouts projects of the galloping control measures are carried out and the effective ones are attained.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jiaxiang Li ◽  
Biao Wang ◽  
Jian Sun ◽  
Shuhong Wang ◽  
Xiaohong Zhang ◽  
...  

Ice shedding causes transmission lines to vibrate violently, which induces a sharp increase in the longitudinal unbalanced tension of the lines, even resulting in the progressive collapse of transmission towers in serious cases, which is a common ice-based disaster for transmission tower-line systems. Based on the actual engineering characteristics of a 500 kV transmission line taken as the research object, a finite element model of a two-tower, three-line system is established by commercial ANSYS finite element software. In the modeling process, the uniform mode method is used to introduce the initial defects, and the collapse caused by ice shedding and its influencing parameters are systematically studied. The results show that the higher the ice-shedding height is, the greater the threat of ice shedding to the system; furthermore, the greater the span is, the shorter the insulator length and the greater the dynamic response of the line; the impact of ice shedding should be considered in the design of transmission towers.


2008 ◽  
Vol 33-37 ◽  
pp. 321-326 ◽  
Author(s):  
Xiu Gen Jiang ◽  
Yang Yang ◽  
Feng Jie Zhang ◽  
Jin San Ju ◽  
Xiao Chuan You

Nonlinear finite element model analysis of the casing plug joints of steel tubular has been realized by ANSYS software. The law of load-carrying capability and stiffness of joint are separately gained by changing the ratio of length and diameter (R/L) and the ratio of the casing length and the main tube length (l/L). The influence of the casing thickness on the load-carrying capability and stiffness are also discussed. The results indicated that the load-carrying capability and stiffness of the joints both increase with the ratio(R/L) increment and the ratio of the casing length and main tube length (l/L). When the main tube thickness is equal to casing thickness, the load-carrying capacity of joints achieves the most.


2013 ◽  
Vol 421 ◽  
pp. 177-180 ◽  
Author(s):  
Jian Hua Zhao ◽  
De Bin Zhu ◽  
Rui Bo Zhang

Rubber CVJ boot is the important part of the car transmission system. Trough crack and surface wear of the CVJ boot are the common failure modes, so the stress distribution simulation of the boot is needed. Acoording to the Mooney-Rivlin model, the definite method of the coefficient for material model was obtained. Based on the software Abaqus, a nonlinear finite element model of CVJ boot was set up. The elements type was hybrid (mixed formulation) C3D4H. The deformation and strength of the boot under working condition were computed. The maximum stress is 11490MPa, located in the first trough and the contact surface of the 3rd and the 2nd crest have more serious wear, which correlate well with the test results. The next work is to optimize boot structure by this simulation model.


2014 ◽  
Vol 597 ◽  
pp. 300-303
Author(s):  
Feng Lin Gan ◽  
Xu Bo Jia

In the paper aiming at lots of 87(LM21) towers in Dongchang Hasong Transmission Line held under Changchun Extra-high voltage Bureau jurisdiction, by using ANSYS software, the nonlinear finite element model for towers is built. And numerical analysis methods is adopted. It is considered that the combined effect of stay wire and transmission tower, geometric non-linear effect and the influence of stay wire initial stress. The Dynamic Properties research about Guyed Transmission is conducted. It concluded that stay wire and tower's mode of vibrationare are relatively independent ,coordinated and the interaction of each other. Natural frequency of vibration and mode of vibration appears regularly and alternately changes with the increase of the formation order .Stay wire initial stress is main factor affecting the natural frequency of the structure and the frequency increases with the increase of stay wire initial stress.


2014 ◽  
Vol 501-504 ◽  
pp. 2479-2483
Author(s):  
Wei Bin Yuan ◽  
Chang Yi Chen

The flattening behaviour of angle section beams subjected to pure bending is studied in this paper. Analytical solutions for static instabilities of angle section beams subjected to pure bending about its weak axis are derived using energy methods. Nonlinear finite element model using the code ANSYS is developed to simulate nonlinear snap-through instability of angle section beams under pure bending. The optimization assumption about flattening shape of the leg is proposed, through comparison of between the present solutions, experimental results, and the finite element results.


Sign in / Sign up

Export Citation Format

Share Document