Ductility of Concrete Encased Cold-Formed Steel Beam with Trapezoidally Corrugated Web

2014 ◽  
Vol 622 ◽  
pp. 65-73 ◽  
Author(s):  
Ravi Divahar ◽  
Philip Saratha Joanna

Engineers have realized that corrugated webs enormously increase their load carrying capacity as well as stability against buckling and can result in very economical design. In this paper, the results of the experiments conducted on cold-formed steel beam with encased trapezoidally corrugated webs with a view to study their strength and ductility are presented. The ductility of cold-formed steel beam with plain web and corrugated web is compared with that of encased trapezoidally corrugated web. Data presented include the load versus deflection curves, load versus strain curves, strength capacity, displacement ductility indices and moment versus curvature curves. It is found that the beam with encased trapezoidally web not only increases the moment carrying capacity but also the ductility. The results showed that the Super elastic property of encased corrugated web beams enhances the usage of it in the earthquake resistant structures.

2016 ◽  
Vol 7 (1) ◽  
pp. 69-78
Author(s):  
Mariusz Marcin Maslak ◽  
Marcin Lukacz

Purpose The purpose of this paper is to present and discuss in detail the design approach to shear buckling resistance evaluation for corrugated web being a part of a steel beam exposed to fire. Design/methodology/approach It is based on the interaction between the local and global elastic instability failure modes as well as on the possible yielding of the whole web cross-section during fire. Findings New formulae, adequate for specification of the suitable shear buckling coefficients, depend not only on the web slenderness but also on the temperature of structural steel. Originality/value The methodology proposed by the authors can be added to the current European standard recommendations given in EN 1993-1-2 as a well-justified design algorithm helpful in reliable evaluation of a safety level for steel beams with slender corrugated webs subject to fire exposure. It seems to be highly desirable because, at present, there are no detailed instructions in this field.


2019 ◽  
Vol 279 ◽  
pp. 02004
Author(s):  
Sergey Kudryavtsev

The paper presents a study of the transverse bending behaviour of corrugated web beam with and without web openings. Examined steel beams consist of two flanges and a thin triangularly corrugated web, connected by automatic welding. In the literature, the influence of web opening over transverse load carrying capacity was dealt with mostly for steel beams with plane, sinusoidal and trapezoidal corrugated webs, so researches of beams with triangularly corrugated webs were found out to be very limited. A parametric study is carried out for various web slenderness and corrugation densities. A general-purpose finite element analysis software ABAQUS was used. The corrugation densities adopted in this study represent practical geometries, which are commonly used for such structures in building practice. Models with and without web openings were analysed and examined in terms of load-deformation characteristics and ultimate web shear resistance. Recommendations are given for the practical design of corrugated web beams weakened by circular openings.


2021 ◽  
Vol 26 (2) ◽  
pp. 163-173
Author(s):  
Maria Yasinta Menge Making ◽  
Ali Awaludin ◽  
Bambang Supriyadi

The capacity and behaviour of cold-formed steel built-up sections are affected by the arrangement of the connections. This study aims to determine the effect of the screw spacing to the bending capacity and behaviour of the cold-formed steel built-up box section which made from lipped-channel (1.0 mm thick, 81 mm web height, 8.5 mm lip height, upper and lower wing width 38 mm and 40 mm). A total of 19 beams with a length of 1200 mm each are subjected to pure bending moments by applying two point loads spaced 600 mm in the midspan. The screw spacing variations in the moment span are 100 mm, 150 mm, 200 mm, 250 mm, 300 mm, 328 mm, and 350 mm. The test results show the average of bending capacity of the beam test is increasing with the reduction in screw spacing while the screw configuration also affects the beam capacity. Analysis of the bending capacity using the effective width method and the direct strength method based on AISI S100-16 gives very conservative results. The failure mode of the built-up box sections were observed in the form of local buckling, distortion, and lateral-torsional buckling. 


Columns are the primary element of a structure and are the first element to face the effect of lateral load during an earthquake. To resist such lateral seismic loading high strength and ductile steel frames with higher energy absorption capacity are generally preferred. The nominal ductile capacity of the steel can be boosted up with additional wrapping that could optimize the seismic performance significantly. The present work deals on the behaviour of cold-formed steel beam and cold formed steel column wrapped with latex layers for strengthening. The specimens were subjected to reversed quasi-static cyclic loading to partially simulate the seismic forces. Experimental results shows significant increase in strength capacity of beam-column with latex layer wrapping.


2011 ◽  
Vol 250-253 ◽  
pp. 1271-1274
Author(s):  
Saggaff Anis ◽  
M.Md. Tahir ◽  
Arizu Sulaiman ◽  
Poi Ngian Shek ◽  
Cher Siang Tan ◽  
...  

The objective of this paper is to present the behaviour of composite beam using Trapezoid Web Profiled (TWP) steel section by determining the moment resistance and the deflection of the beam with composite and non-composite connections. The TWP steel section is a built up section where the flange is of S355 steel section and the corrugated web of S275 steel section. Three full scales testing setting-up as sub-assemblage frame have been carried out. It was concluded that the use of composite connection and extended end-plate has reduced significantly the deflection and has significantly increased the loading capacity of composite beam.


2017 ◽  
Vol 79 (5) ◽  
Author(s):  
Nahushananda Chakravarthy ◽  
Sivakumar Naganathan ◽  
Jonathan Tan Hsien Aun ◽  
Sreedhar Kalavagunta ◽  
Kamal Nasharuddin Mustapha ◽  
...  

Cold formed steel differ from hot rolled steel by its lesser thickness and weight. The cold formed steel applicable in roof purlin, pipe racks and wall panels etc. Due its lesser wall thickness the cold formed steel member subjected to buckling. The enhancement of load carrying capacity of the cold formed steel member can be achieved by external strengthening of CFRP. In this study cold formed channel members connected back to back to form I shaped cross section using screws. These built up beam members were 300mm, 400mm and 500mm in length with 100mm screw spacing and edge distance of 50mm were chosen for testing. CFRP fabric cut according to length, width of built up beams and wrapped outer surface of beam using epoxy resin. Experiments were carried out in two sets firstly plain built up beams and secondly CFRP wrapped beams. The test results shows that increased load carrying capacity and reduction in deflection due to CFRP strengthening. Experimental results were compared with AISI standards which are in good agreement. Experimental results shows that CFRP strengthening is economic and reliable.


2016 ◽  
Vol 12 (3) ◽  
Author(s):  
Uiatan Aguiar Nogueira ◽  
Matilde Batista Melo ◽  
Daniel De Lima Araujo

RESUMO: A Análise de elementos estruturais, realizadas durante as etapas de projeto de uma estrutura, é parte fundamental para garantia de bom desempenho e estabilidade do sistema estrutural. Na execução de algumas estruturas, como as coberturas em edificações, é usual o emprego de perfis leves de aço formados a frio devido ao seu baixo peso. Esta pesquisa tem por objetivo avaliar a eficiência estrutural desses perfis quando comparados, por exemplo, aos perfis soldados compactos. Para tanto, foram realizados ensaios de flexão em quatro vigas biapoiadas submetidas a duas forças concentradas, de forma a se obter flexão pura no meio do vão das vigas. Estas foram instrumentadas para a determinação da sua rigidez e da sua resistência à flexão. A principal contribuição deste trabalho é demonstrar a eficiência estrutural de perfis formados a frio em seção caixa submetidos à flexão em comparação com perfis de seção tipo “H” soldados. ABSTRACT: The analysis of structural elements, in a structure’s design, is an essential step to ensure good performance and stability of the structural system. In any types of structures, such as roofing in buildings, it’s usual using cold-formed steel beams due to their small weight. This research seeks to evaluate the structural efficiency of cold-formed steel beams when compared, for example, to compact welded steel beams. Thus, bending tests were performed in four simply supported beams submitted to two concentrated loads, in order to obtain pure flexure at the mid-span of the beams. These beams were instrumented for the determination of their rigidity and bending strength. The results showed that the cold-formed steel beam, box-shaped, presented structural efficiency similar to the welded steel beam “H” shaped.


Sign in / Sign up

Export Citation Format

Share Document