A Review on Glassy Polymeric Membranes for Gas Separation

2014 ◽  
Vol 625 ◽  
pp. 701-703 ◽  
Author(s):  
Marjan Farnam ◽  
Hilmi Mukhtar ◽  
Azmi Mohd Shariff

Polymeric membranes are widely used for gas separation purposes but their performance is restricted by the upper bound trade-off discovered by Robeson in 1991. The polymeric membrane can be glassy, rubbery or a blend of these two polymers. This review paper discusses the properties of glassy polymer membranes and their performance in gas separation. The area of improvement for glassy membrane with development of mixed matrix membrane is also highlighted.

2014 ◽  
Vol 625 ◽  
pp. 653-656 ◽  
Author(s):  
Biruh Shimekit ◽  
Azmi Mohd Shariff ◽  
Hilmi Mukhtar ◽  
Mohamad Azmi Bustam ◽  
Ali E.I. Elkhalifah ◽  
...  

Development of novel mixed matrix membranes (MMMs) has become frontier candidates for improving the upper bound trade-off curve between permeability and selectivity of gases for industrial polymeric membranes. However, fabrication of ideal MMMs is practically challenging as the dispersion of inorganic phase into the polymer may produce polymeric-inorganic interfacial defects at the vicinity of the polymer matrix. For instance, the inorganic phase may cause interfacial void, polymer chain rigidification or partial pore blockage on the overall MMMs. Since there are only few studies that specifically focus on the issues of the interfacial morphology of MMMs, therefore, the present study provides brief description of the aforementioned interfacial (non-ideal) defects of MMMs and summarizes the techniques used to repair the interfacial defects for enhanced gas separation in MMMs.


2021 ◽  
Vol 28 (5) ◽  
Author(s):  
Fadel Abdul Hadi Juber ◽  
Zeinab Abbas Jawad ◽  
Bridgid Lai Fui Chin ◽  
Swee Pin Yeap ◽  
Thiam Leng Chew

AbstractCarbon dioxide (CO2) emissions have been the root cause for anthropogenic climate change. Decarbonisation strategies, particularly carbon capture and storage (CCS) are crucial for mitigating the risk of global warming. Among all current CO2 separation technologies, membrane separation has the biggest potential for CCS as it is inexpensive, highly efficient, and simple to operate. Polymeric membranes are the preferred choice for the gas separation industry due to simpler methods of fabrication and lower costs compared to inorganic or mixed matrix membranes (MMMs). However, plasticisation and upper-bound trade-off between selectivity and permeability has limited the gas separation performance of polymeric membranes. Recently, researchers have found that the blending of glassy and rubbery polymers can effectively minimise trade-off between selectivity and permeability. Glassy poly(ethersulfone) (PES) and rubbery poly(ethylene) glycol (PEG) are polymers that are known to have a high affinity towards CO2. In this paper, PEG and PES are reviewed as potential polymer blend that can yield a final membrane with high CO2 permeance and CO2/nitrogen (N2) selectivity. Gas separation properties can be enhanced by using different solvents in the phase-inversion process. N-Methyl-2-Pyrrolidone (NMP) and Dimethylformamide (DMF) are common industrial solvents used for membrane fabrication. Both NMP and DMF are reviewed as prospective solvent blend that can improve the morphology and separation properties of PES/PEG blend membranes due to their effects on the membrane structure which increases permeation as well as selectivity. Thus, a PES/PEG blend polymeric membrane fabricated using NMP and DMF solvents is believed to be a major prospect for CO2/N2 gas separation.


2019 ◽  
Vol 1 (1) ◽  
pp. 10
Author(s):  
Indri Susanti

Membrane technology for gas separation applications are limited by a "trade-off" curve between permeability and selectivity. It show that permeability is high, selectivity obtained is low. This problem can be solved by preparation of Mixed-Matrix Membrane (MMMs) which can increase the value of permeability and selectivity. The MMMs with polysulfone polymers and zeolite fillers is more corresponding for gas separation. Addition of zeolite filler to polysulfone polymer in MMMs can improve the CO2 separation performance. In this review, mechanism of gas separation in MMMs was carried out in the application of CO2/CH4 gas separation. In addition, the effect of addition, size and pore of zeolite filler in MMMs for binary gas separation were also discussed in this review.


2015 ◽  
Vol 773-774 ◽  
pp. 1085-1090 ◽  
Author(s):  
Norwahyu Jusoh ◽  
Yin Fong Yeong ◽  
Kok Keong Lau ◽  
Mohd Shariff Azmi

—A new bang of natural gas demand has opened up the opportunities towards the utilization of membrane technology for the purification process.The advantages in terms of smaller footprint, lower weight, minimum utility requirement and low labor intensity make them appropriate for wide scale applications. Polymeric membrane is one of the greatest emerging fields in membrane material development. Nevertheless, the separation performance of the existing polymeric materials were reached a limit in the trade-off between permeability and selectivity. The development of inorganic material gives a significance improvement in membrane performance but it outrageously expensive for many applications and having complicated procedure during fabrication process have limit the application of inorganic membrane in gas separation. Thus, a rapid demand in membrane technology for gas separation and the effort toward seeking the membranes with higher permeability and selectivity has motivated the development of mixed matrix membrane. Mixed matrix membrane (MMM) which incorporating inorganic fillers in a polymer matrix is expected to overcome the limitations of the polymeric and inorganic membranes. Apart from an overview of the different membrane materials for gas separation, this paper also highlights the development of mixed matrix membrane and challenges in fabrication of mixed matrix membranes.


2020 ◽  
Vol 9 (1) ◽  
pp. 219-229 ◽  
Author(s):  
Alia Aqilah Ghazali ◽  
Sunarti Abd Rahman ◽  
Rozaimi Abu Samah

AbstractMixed matrix membrane (MMM), formed by dispersing fillers in polymer matrix, has attracted researchers’ attention due to its outstanding performance compared to polymeric membrane. However, its widespread use is limited due to high cost of the commercial filler which leads to the studies on alternative low-cost fillers. Recent works have focused on utilizing agricultural wastes as potential fillers in fabricating MMM. A membrane with good permeability and selectivity was able to be prepared at low cost. The objective of this review article is to compile all the available information on the potential agricultural wastes as fillers in fabricating MMM for gas separation application. The gas permeation mechanisms through polymeric and MMM as well as the chemical and physical properties of the agricultural waste fillers were also reviewed. Additionally, the economic study and future direction of MMM development especially in gas separation field were discussed.


Membranes ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 194
Author(s):  
Xiuxiu Ren ◽  
Masakoto Kanezashi ◽  
Meng Guo ◽  
Rong Xu ◽  
Jing Zhong ◽  
...  

A new polyhedral oligomeric silsesquioxane (POSS) designed with eight –(CH2)3–NH–(CH2)2–NH2 groups (PNEN) at its apexes was used as nanocomposite uploading into 1,2-bis(triethoxysilyl)ethane (BTESE)-derived organosilica to prepare mixed matrix membranes (MMMs) for gas separation. The mixtures of BTESE-PNEN were uniform with particle size of around 31 nm, which is larger than that of pure BTESE sols. The characterization of thermogravimetric (TG) and gas permeance indicates good thermal stability. A similar amine-contained material of 3-aminopropyltriethoxysilane (APTES) was doped into BTESE to prepare hybrid membranes through a copolymerized strategy as comparison. The pore size of the BTESE-PNEN membrane evaluated through a modified gas-translation model was larger than that of the BTESE-APTES hybrid membrane at the same concentration of additions, which resulted in different separation performance. The low values of Ep(CO2)-Ep(N2) and Ep(N2) for the BTESE-PNEN membrane at a low concentration of PNEN were close to those of copolymerized BTESE-APTES-related hybrid membranes, which illustrates a potential CO2 separation performance by using a mixed matrix membrane strategy with multiple amine POSS as particles.


Author(s):  
Pulak Sarkar ◽  
Solagna Modak ◽  
Santanu Ray ◽  
Vasista Adupa ◽  
K. Anki Reddy ◽  
...  

Liquid transport through the composite membrane is inversely proportional to the thickness of its separation layer. While the scalable fabrication of ultrathin polymer membranes is sought for their commercial exploitation,...


2014 ◽  
Vol 241 ◽  
pp. 495-503 ◽  
Author(s):  
A.K. Zulhairun ◽  
A.F. Ismail ◽  
T. Matsuura ◽  
M.S. Abdullah ◽  
A. Mustafa

RSC Advances ◽  
2016 ◽  
Vol 6 (83) ◽  
pp. 79563-79577 ◽  
Author(s):  
S. A. Habibiannejad ◽  
A. Aroujalian ◽  
A. Raisi

In this study different functional groups on the surface of carbon nanotube enhanced the performance of Pebax 1657/MWNTs.


Membranes ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 75 ◽  
Author(s):  
S. A. S. C. Samarasinghe ◽  
Chong Yang Chuah ◽  
H. Enis Karahan ◽  
G. S. M. D. P. Sethunga ◽  
Tae-Hyun Bae

Membrane-based air separation (O2/N2) is of great importance owing to its energy efficiency as compared to conventional processes. Currently, dense polymeric membranes serve as the main pillar of industrial processes used for the generation of O2- and N2-enriched gas. However, conventional polymeric membranes often fail to meet the selectivity needs owing to the similarity in the effective diameters of O2 and N2 gases. Meanwhile, mixed-matrix membranes (MMMs) are convenient to produce high-performance membranes while keeping the advantages of polymeric materials. Here, we propose a novel MMM for O2/N2 separation, which is composed of Matrimid® 5218 (Matrimid) as the matrix, cobalt(II) phthalocyanine microparticles (CoPCMPs) as the filler, and Pluronic® F-127 (Pluronic) as the compatibilizer. By the incorporation of CoPCMPs to Matrimid, without Pluronic, interfacial defects were formed. Pluronic-treated CoPCMPs, on the other hand, enhanced O2 permeability and O2/N2 selectivity by 64% and 34%, respectively. We explain the enhancement achieved with the increase of both O2 diffusivity and O2/N2 solubility selectivity.


Sign in / Sign up

Export Citation Format

Share Document