Two Welding Models Application on Fatigue Analysis for Front Sub-Frame

2011 ◽  
Vol 63-64 ◽  
pp. 431-434
Author(s):  
Jiang Tao Xu ◽  
Rui Xia Guo

This article firstly established two finite element models of seam weld and spot-weld for the front sub-frame, then used the two models for seam weld and spot weld fatigue simulation analysis, next cooperated with bench test results for verification. After the above steps, we not only found the weak portion of the front sub-frame, but also provide reference for both optimum design and improving the bench test design.

2010 ◽  
Vol 118-120 ◽  
pp. 191-195 ◽  
Author(s):  
Tao Zhu ◽  
Shou Ne Xiao ◽  
Guang Wu Yang ◽  
Bing Rong Miao

In order to accurately and conveniently simulate spot-weld in FEA, based on the typical specimen of stainless steel, three typical finite element models (FEM) of spot-welds have been created as analysis objects. Firstly, based on the calculation theory of the spot-weld fatigue, two sets of analytical solution, which were the maximum principle stress of the specimen around the spot-weld nugget, were obtained under the action of stretching and shearing, respectively. Then, their linear elastic FEM were established, and the stress states around the spot-weld nugget and the adjacent sheets were analyzed. Finally, according to the results compared between the analytical solution and simulation solution, it can be seen that, when the specimen was stretched, using the brick model to simulate the nugget can get the smallest absolute error of the principle stress, so its spot-weld fatigue damage is the most consistent with the actual situation, a stiff beam model followed, and an umbrella model is the worst; when the specimen was sheared, using the brick model to simulate the nugget can also get the smallest absolute error of the principle stress, so its spot-weld fatigue damage is also the most consistent with the actual situation, the umbrella model is followed, and the stiff beam model is the worst. The results show that appropriate selection of spot-weld FEM is extremely essential for fatigue life prediction under the initial design of products.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2978
Author(s):  
Zhi-Min Liu ◽  
Xue-Jin Huo ◽  
Guang-Ming Wang ◽  
Wen-Yu Ji

Compared with straight steel–concrete composite beams, curved composite beams exhibit more complicated mechanical behaviors under combined bending and torsion coupling. There are much fewer experimental studies on curved composite beams than those of straight composite beams. This study aimed to investigate the combined bending and torsion behavior of curved composite beams. This paper presents static loading tests of the full elastoplastic process of three curved composite box beams with various central angles and shear connection degrees. The test results showed that the specimens exhibited notable bending and torsion coupling force characteristics under static loading. The curvature and interface shear connection degree significantly affected the force behavior of the curved composite box beams. The specimens with weak shear connection degrees showed obvious interfacial longitudinal slip and transverse slip. Constraint distortion and torsion behavior caused the strain of the inner side of the structure to be higher than the strain of the outer side. The strain of the steel beam webs was approximately linear. In addition, fine finite element models of three curved composite box beams were established. The correctness and applicability of the finite element models were verified by comparing the test results and numerical calculation results for the load–displacement curve, load–rotational angle curve, load–interface slip curve, and cross-sectional strain distribution. Finite element modeling can be used as a reliable numerical tool for the large-scale parameter analysis of the elastic–plastic mechanical behavior of curved composite box beams.


2012 ◽  
Vol 215-216 ◽  
pp. 160-167 ◽  
Author(s):  
Qing Long Li ◽  
Ji Yang Yu ◽  
Qiang Qiang Zhang ◽  
Jian Qun Yu ◽  
Hong Fu

A three-dimensional discrete element method analytic model of the corn seed metering device with combination inner-cell was established based on its 3D CAD model, and the three-dimensional particle model of corn seeds was built by using the method of combination spherical particle. The working process of the corn seed metering device was simulated and analyzed by self-developed three-dimensional CAE software. It was observed that the simulative results of the seeding performance, clearing angles and dropping angles of the corn seeds well agreed with the bench test results. A novel method for studying and designing of the corn seed metering device was put forward.


2009 ◽  
Vol 16-19 ◽  
pp. 1112-1116
Author(s):  
Dong Lei Liu ◽  
Hua Yan ◽  
Zong Bao Shen ◽  
Xin Hua Song ◽  
Xiao Wang

The theoretical models and finite element models of implant-supported fixed partial dentures and surrounding osseous tissues were founded. It was studied of the influence of connector sectional area on implant-supported fixed partial dentures and surrounding osseous tissues. The results indicate that increasing the connector sectional areas to some extent has positive effect on fixed bridge itself. But the maximum stresses in some regions of surrounding osseous tissues increase as the connector sectional areas increase, the change extent is smaller comparatively. The study provides biomechanics evidence for the optimum design of implant-supported fixed partial dentures.


Author(s):  
Noman Khandoker ◽  
Monir Takla ◽  
Thomas Ting

Simple spot weld connection models are desirable in huge and complicated finite element models of automotive body-in-white structures which generally contains thousands of spot weld joints. Hence, in this paper six different individual spot weld joint finite element models simplified in terms of their geometric and constitutive representations were developed including the one that is currently used in automotive industries. The stiffness characteristics of these developed models were compared with the experimental results obtained following a simple strategy to design the welded joint based on the desired mode of nugget pull out failure. It was found that the current spot weld modeling practice in automotive industry under predict the maximum joint strength nearly by 50% for different loading conditions. The computational costs incurred by the developed models in different loading conditions were also compared. Hence, a suitable model for spot welded joints is established which is very simple to develop but relatively cheap in terms of computational costs.


2011 ◽  
Vol 130-134 ◽  
pp. 2724-2728
Author(s):  
Jin Qiang Du ◽  
Yu Ting He ◽  
Hua Ding ◽  
Li Ming Wu ◽  
Qing Shao

Finite element models of an eddy current sensor array are built up by electromagnetic-circuit couple method, and the influences of conformable substrate on sensor’s output characteristics are analyzed by those models. It is shown that the model contains the conformable substrate has almost the same output characteristics as the model without it, but the output amplitudes and phases of the former model are higher than the latter. Therefore we can simply the sensor as a single surface to facilitate the analysis, and then revise it to fit to the real sensor.


Author(s):  
Prasannakumar S. Bhonge ◽  
Chandrashekhar K. Thorbole ◽  
Hamid M. Lankarani

The aircraft seat dynamic performance standards as per CFR 14 FAR Part 23, and 25 requires the seat to demonstrate crashworthy performance as evaluated using two tests namely Test-I and Test-II conditions. Test-I dynamic test includes a combined vertical and longitudinal dynamic load to demonstrate the compliance of lumbar load requirement for a Hybrid II or an FAA Hybrid III Anthropomorphic Test Device (ATD). The purpose of this test is to evaluate the means by which the lumbar spine of the occupant in an impact landing can be reduced. This test requirement is mandatory with every change in the seat design or the cushion geometry. Experimental full-scale crash testing is expensive and time-consuming event when required to demonstrate the compliance issue. A validated computational technique in contrast provides an opportunity for the cost effective and fast certification process. This study mainly focuses on the characteristics of DAX foams, typically used as aircraft seat cushions, as obtained both at quasi-static loading rate and at high loading rate. Nonlinear finite element models of the DAX foam are developed based on the experimental test data from laboratory test results conducted at different loading rates. These cushion models are validated against sled test results to demonstrate the validity of the finite element models. The results are compared for these computational sled test simulations with each seat cushion as obtained using quasi-static and high-loading rate characteristics. The result demonstrates a better correlation of the simulation data with the full scale crash test data for the DAX foam when high loading rate data is utilized instead of quasi-static data in the dynamic finite element models. These models can be utilized in the initial design of the aircraft seats, and thus reducing the cost and time of a full-scale sled test program.


2019 ◽  
Vol 9 (10) ◽  
pp. 2112 ◽  
Author(s):  
Liwei Shi ◽  
Junhao An ◽  
Wenchao Zhang

To present the characteristics of pole number and pole shape of the core, the five-phase wound-field doubly salient generators (WFDSGs) with symmetric phase inductance are studied and optimised in this paper, considering the split ratio, slot fill factor and core fringing effect. Based on the principle and structure of the five-phase WFDSGs, the winding induced electro-motive force under different number of poles is theoretically analysed. The constraints for parameter optimisation design including slot fill factor, split ratio and magnetic density characteristic are given. The finite element models of 30/24-pole and 20/16-pole WFDSG are established, and the comparative simulation analysis is carried out. It is pointed out that when the inner and outer diameters of the stator and rotor, the axial length and the maximum magnetic density are constant, the induction electromotive forces of the WFDSGs with different pole numbers and same phase coil number are same. Considering the pole fringing effect, the rotor pole equivalent width is the sum of the rotor pole actual width and 4 times of the air gap. The comparison experiments between the 30/24-pole and 20/16-pole WFDSGs were carried out, which verified the correctness of the theoretical analysis and finite element analysis (FEA).


2011 ◽  
Vol 467-469 ◽  
pp. 1327-1332 ◽  
Author(s):  
Wu Ying ◽  
Peng Zhang ◽  
Wu Liu

Dent is one of the important factors affecting pipeline fatigue life, and it will greatly reduce the fatigue life of the pipeline in service. Based on a large number of foreign dented pipeline fatigue test results and fatigue life model, for the typical dent defect, using finite element method, various parameters are changed and finite element models are obtained under different conditions. According to many calculation results, a key ratio of peak period stress and pipeline pressure variation are obtained, which are substituted to the fatigue life model and the example are calculated.


Author(s):  
Matteo Palmonella ◽  
Michael I. Friswell ◽  
Cristinel Mares ◽  
John E. Mottershead

This paper gives an overview of the finite element modelling of spot welds for the analysis of the dynamic response of structures. In particular models for dynamic analysis that use coarse meshes and equivalent parameters are considered. A major requirement for these models is their accuracy in predicting the dynamic behaviour of spot welded structures despite the low number of degrees of freedom. Three different models of spot welds are investigated [1–3] and for each model physical parameters have to be assigned based on engineering insight. The aim of the present paper is to improve the accuracy of these three models by searching for the optimum values of the parameters characterising the spot weld models using experimental data. For this purpose a benchmark structure has been analysed, consisting of a thin walled hat section beam made of two plates welded together by twenty spot welds. The predicted natural frequencies and modes of the benchmark structure have been compared to the experimental modes. Updating of the finite element models has been performed and the accuracy of the three models has been significantly improved.


Sign in / Sign up

Export Citation Format

Share Document