Air Quality in a Semi-Enclosed Public Transport Interchange Station in Rush Hour

2014 ◽  
Vol 638-640 ◽  
pp. 2077-2081
Author(s):  
Yan Feng Li ◽  
Meng Zhao ◽  
Xin Xin Lin

Indoor air quality in a public transport interchange station in rush hour has been studied. Carbon monoxide is selected as the main pollutant for description of air quality. Ventilation systems, bus traffic and passenger flow, air quality have been investigated by on-site survey. Large eddy simulation technology has been used to analyze indoor air quality of public transport interchange station. The boundary conditions are determined according to the measured date. Indoor air quality results at heights of 0.8m and 1.6m in rush hour and two operating conditions of public transport interchange station are calculated. Results have shown carbon monoxide concentrations at height of 0.8m are higher than those at height of 1.6m. Air quality would reach the harmful degree within 5min to 10min if the ventilation system is not operating. The ventilation system should be operated continuously during the peak hour in order to meet the requirement of indoor air quality standards.

2020 ◽  
Vol 38 (9A) ◽  
pp. 1257-1275
Author(s):  
Wisam M. Mareed ◽  
Hasanen M. Hussen

 Elevated CO2 rates in a building affect the health of the occupant. This paper deals with an experimental and numerical analysis conducted in a full-scale test room located in the Department of Mechanical Engineering at the University of Technology. The experiments and CFD were conducted for analyzing ventilation performance. It is a study on the effect of the discharge airflow rate of the ceiling type air-conditioner on ventilation performance in the lecture room with the mixing ventilation. Most obtained findings show that database and questionnaires analyzed prefer heights between 0.2 m to 1.2 m in the middle of an occupied zone and breathing zone height of between 0.75 m to 1.8 given in the literature surveyed. It is noticed the mismatch of internal conditions with thermal comfort, and indoor air quality recommended by [ASHRAE Standard 62, ANSI / ASHRAE Standard 55-2010]. CFD simulations have been carried to provide insights on the indoor air quality and comfort conditions throughout the classroom. Particle concentrations, thermal conditions, and modified ventilation system solutions are reported.


2011 ◽  
Vol 20 (1) ◽  
pp. 187-197 ◽  
Author(s):  
Min Jeong Kim ◽  
Yong Su Kim ◽  
Abtin Ataei ◽  
Jeong Tai Kim ◽  
Jung Jin Lim ◽  
...  

The purpose of this study was to evaluate changes in the concentration of air pollutants in the indoor environments, which could be caused by seasonal changes or changes in operating conditions of subway metro stations. In fact, there are many different types of pollution that can cause contamination in subway stations, and changes in operating conditions can also lead to changes in the indoor air quality (IAQ). Therefore, in order to establish a proper management of IAQ, it would be necessary to evaluate the changes in IAQ according to the changes in conditions. To do this, the present study used a multivariate analysis of variance (MANOVA). The results of testing the hypothesis proved that two groups, divided by the condition of a platform screen door (PSD) system, could differ statistically. Furthermore, those multidimensional differences were caused by installation of a PSD system. When applied to a real-time tele-monitoring system, MANOVA could clearly identify the daily and weekly variations of IAQ in the subway station, as well as the PSD system’s condition. Accordingly, this method could be useful for developing a multivariate system to statistically evaluate the experimental IAQ results in order to optimise operating conditions in a subway metro station to improve IAQ, and to minimise adverse health effects on passengers by exposure to harmful substances.


Author(s):  
Seyed Ali Keshavarz ◽  
Mazyar Salmanzadeh ◽  
Goodarz Ahmadi

Recently, attention has been given to indoor air quality due to its serious health concerns. Clearly the dispersion of pollutant is directly affected by the airflow patterns. The airflow in indoor environment is the results of a combination of several factors. In the present study, the effects of thermal plume and respiration on the indoor air quality in a ventilated cubicle were investigated using an unsteady computational modeling approach. The person-to-person contaminant transports in a ventilated room with mixing and displacement ventilation systems were studied. The effects of rotational motion of the heated manikins were also analyzed. Simulation results showed that in the cases which rotational motion was included, the human thermal plume and associated particle transport were significantly distorted. The distortion was more noticeable for the displacement ventilation system. Also it was found that the displacement ventilation system lowered the risk of person-to-person transmission in an office space in comparison with the mixing ventilation system. On the other hand the mixing system was shown to be more effective compared to the displacement ventilation in removing the particles and pollutant that entered the room through the inlet air diffuser.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3798 ◽  
Author(s):  
Sara Zanni ◽  
Francesco Lalli ◽  
Eleonora Foschi ◽  
Alessandra Bonoli ◽  
Luca Mantecchini

Indoor air quality (IAQ) management in public spaces is assuming a remarkable importance. Busy environments, like airport terminals, are currently regarded as possible hotspots and IAQ is a crucial element for passengers and staff protection, as well as a key aspect of airport passenger experience. A one-month monitoring period has been performed on IAQ in the airport of Bologna (Italy), as prototypal example of large regional airport. Four strategic areas within the airport have been equipped with electronic monitoring platforms, including different contaminants and two microclimatic sensors. Data suggest that daily variation in IAQ parameters typically follow the activity pattern of the different environments under study (i.e., passengers’ flows) for gaseous contaminants, where particulate matter counts oscillate in a definite range, with a significant role played by ventilation system. Gaseous contaminants show a correlation between indoor and outdoor concentrations, mainly due to airside activities. Micro-climatic comfort parameters have been tested to match with standards for commercial environments. As results appears in line with typical households IAQ values, the current air ventilation system appears to be adequate. Nevertheless, an integrated air management system, based on real-time monitoring, would lead to optimization and improvement in environmental and economical sustainability.


Author(s):  
Edgar C. Ambos ◽  
Evan Neil V. Ambos ◽  
Lanndon A. Ocampo

Due to its significant role in improving indoor air quality, displacement ventilation system is widely adopted in current literature. This paper proposes a displacement ventilation system for room conditions with ceilings that are relatively low, internal heat load could be high, walls could be sunlit, and occupants doing the low physical activity. These conditions are prevalent in the Philippines, being a tropical country. Input parameters to the design process such as heat load, the height of the ceiling, comfort, and indoor air quality requirements were generated, and the main output parameters are the stratification height and ventilation airflow rate. To demonstrate the proposed displacement ventilation system, four cases were generated. Results show that the ventilation airflow rates obtained from the four cases were greater than the minimum outdoor air requirements for health in conference rooms and large assembly areas which are 17.5 and 3.5 liters/sec*person respectively, for smoking and no smoking rooms.


Proceedings ◽  
2019 ◽  
Vol 16 (1) ◽  
pp. 55
Author(s):  
Andrzej Gajewski ◽  
Kacper Jermacz

The aim of the paper was to conduct an indoor air quality (IAQ) assessment in an auto repair shop, measuring CO2 and CO concentrations. Carbon monoxide and carbon dioxide concentrations were measured for a week. Two Testo 435-4 gauges were located at head height of an adult person (ca. 170 cm above the floor) in a room. The CO2 concentration was measured with an IAQ probe, which measures dew point temperature, psychrometer temperature and absolute pressure in indoor air. The second gauge was connected to a CO probe. Measurements were taken every 5 min and were averaged across an hour. Uncertainties were estimated using square-root combinations of fixed errors and random errors at a 0.05 level of statistical significance. The measurements were conducted from 17 November to 23 November 2018. The following graphs were plotted for carbon dioxide and carbon monoxide: hourly averaged concentration and 8 h averaged concentration. The results were discussed and compared to Polish, foreign and international standards and recommendations. It was found that the auto shop was in danger of negligence according to Polish law as well as nonfulfillment of healthy recommendations. An exhaust extraction system should be installed.


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1596 ◽  
Author(s):  
Csáky ◽  
Kalmár ◽  
Kalmár

Using personalized ventilation systems in office buildings, important energy saving might be obtained, which may improve the indoor air quality and thermal comfort sensation of occupants at the same time. In this paper, the operation testing results of an advanced personalized ventilation system are presented. Eleven different air terminal devices were analyzed. Based on the obtained air velocities and turbulence intensities, one was chosen to perform thermal comfort experiments with subjects. It was shown that, in the case of elevated indoor temperatures, the thermal comfort sensation can be improved considerably. A series of measurements were carried out in order to determine the background noise level and the noise generated by the personalized ventilation system. It was shown that further developments of the air distribution system are needed.


Sign in / Sign up

Export Citation Format

Share Document