Study of Tensile Properties and Fracture Mechanisms of Fully Lamellar TiAl Based Alloy

2011 ◽  
Vol 66-68 ◽  
pp. 1106-1111 ◽  
Author(s):  
Bin Tang ◽  
Chuan Jing Chen ◽  
Zhi Yong Xue ◽  
Chung Jing Wu ◽  
Shuang Shou Li

The tensile properties and fracture mechanisms of fully lamellar TiAl based alloy was studied by room and high temperature (400°C) tensile test. The results indicated that: the crack initiated between weak lamellar interfaces.With tension increased, the cracks extended along lamellar direction. Crack propagation resistance was enhanced at colony boundary. Ligaments broke while load increased, and then the main crack and microcrack linked. The fracture process was that the main crack occurred firstly, microcrack appeared and then propagated, the main crack and microcrack were linked,and the alloy fractured finally; The ductility of the alloy at 400°C was superior to that at room temperature; The fracture mechanism of the fully lamellar TiAl based alloy is brittle cleavage fracture.

2014 ◽  
Vol 881-883 ◽  
pp. 1330-1333 ◽  
Author(s):  
Yan Rui Zuo ◽  
Zhi Yuan Rui ◽  
Rui Cheng Feng ◽  
De Chun Luo ◽  
Chang Feng Yan

Based on the fatigue crack propagation experiments did by A.-L. Gloanec et al., the fatigue crack propagation rates of TiAl alloy of two processing routes, namely casting and PM, and stress ratios had been tested, in order to find out the effects of microstructure and stress ratio. An improved fatigue crack propagation formula for region Ⅱ (the expansion region) was derived according to Paris formula. The specific values of the constants in the formula were calculated. Fatigue crack propagation resistance of nearly fully lamellar microstructure is superior to that of equiaxed γ grain. The experimental results present that both microstructure and stress ratio has a significant influence on fatigue crack growth rate.


2007 ◽  
Vol 546-549 ◽  
pp. 1437-1442 ◽  
Author(s):  
Rui Cao ◽  
Jian Hong Chen ◽  
J. Zhang

Fracture behavior of fully lamellar (FL) and duplex phase (DP) TiAl alloys is reported in this paper. It was found that the inverse behavior of coarse FL TiAl alloy showing inferior tensile properties but superior fracture toughness resulted from the different fracture mechanisms of these two types’ tests. In tensile specimens, the final fracture happened at a section that was most heavily damaged by the accumulation of large interlamellar microcracks and arbitrarily located within the gauge-limited volume. In 3PB notch specimens, the propagation of the main crack was constrained within a narrow strip nearby the centerline where the normal stress was the highest. Large lamellar grains caused serious damage in tensile tested specimens. However multi-oriented large lamellar grains formed seriously bifurcated crack tips, which made the crack propagation more difficult in 3PB notched specimen. The main mechanisms of toughening in FL specimens were the deflection of main crack, bifurcation and blunting of crack tip and formation of a diffuse zone of microcracks. These phenomena reduced the driving force for crack extending and then increased the fracture toughness.


2012 ◽  
Vol 482-484 ◽  
pp. 1713-1717
Author(s):  
Bin Tang ◽  
Chuan Jing Chen ◽  
Zhi Yong Xue ◽  
Chun Jing Wu ◽  
Shuang Shou Li

The changes of the tensile properties of the full lamellar TiAl alloy under pre-compression were studied by means of pre-compression damage tests and tensile tests. The study indicated that:The changes of the tensile property of the damaged alloy at room temperature were different from that of high temperature. The mechanical property of the TiAl alloy degrades because of the present of the cracks, which decrease the load area of the alloy.


2013 ◽  
Vol 747-748 ◽  
pp. 926-931 ◽  
Author(s):  
Chang Jiang Zhang ◽  
Fan Tao Kong ◽  
Shu Long Xiao ◽  
Li Juan Xu ◽  
Yuong Chen ◽  
...  

In this work, 2.5vol. % (TiB+TiC)/Ti composite was prepared by in situ casting route then 1-D forging. The microstructure and tensile properties were presented and discussed. The results indicate that the as cast microstructure can be significantly modified by 1-D forging. After forging, TiB and TiC segregated at the prior β grain boundaries within the as-cast composite tend to fracture and align perpendicular to forging direction. Reduction in aspect ratio of reinforcements and α lath is also observed. 1-D forging can enhance the strength and elongation of as cast composite significantly. However, the increment in strength is quite limited as strain temperature increases to 700 °C. Additionally, room temperature and high temperature fracture mechanisms are also discussed.


Alloy Digest ◽  
1969 ◽  
Vol 18 (10) ◽  

Abstract Magnesium ZK61A is a heat treatable sand casting alloy offering higher strength properties for room-temperature applications than other magnesium casting alloys. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Mg-67. Producer or source: The Dow Chemical Company.


Alloy Digest ◽  
2011 ◽  
Vol 60 (12) ◽  

Abstract Dillidur 450V is a water hardened wear-resistant steel with surface hardness at room temperature of 420-480 HB. The steel is easy to weld and bend. Hot working is not recommended. This datasheet provides information on composition, physical properties, hardness, tensile properties, and bend strength as well as fracture toughness. It also includes information on wear resistance as well as forming, heat treating, machining, and joining. Filing Code: SA-638. Producer or source: Dillinger Hütte GTS.


Alloy Digest ◽  
2018 ◽  
Vol 67 (4) ◽  

Abstract XAR 500 Premium is a special wear-resistant structural steel. It is delivered as heavy plate 3–100 mm (0.118–3.937 in.) in the quenched or quenched and tempered condition with room temperature hardness between 470 and 530 HBW. The Premium grade contains 1.5 wt% nickel. This datasheet provides information on composition and tensile properties. It also includes information on heat treating and joining. Filing Code: SA-814. Producer or source: ThyssenKrupp Steel Europe AG.


2015 ◽  
Vol 76 (11) ◽  
Author(s):  
Norhashidah Manap ◽  
Aidah Jumahat ◽  
Napisah Sapiai

Kenaf fibre has become one of the best candidates to be used as reinforcement material in polymer composite. However, the adhesion between natural fibre and polymer is weak due to different polarity of natural fibre and hydrophobic polymer. This affects the properties of the composite. One of the method to overcome this compatibility issue is by treating the fibre using sodium hydroxide (NaOH). This study is aimed to evaluate the effect of NaOH treatment on longitudinal and transverse tensile properties of kenaf composites using three different concentration (3, 5, and 7 wt. % NaOH). The kenaf composite test specimens were prepared using filament winding and vacuum bagging techniques. The 0o and 90o tensile tests were conducted in accordance to ASTM standard D3039 in order to obtain longitudinal and transverse tensile properties of treated and untreated kenaf composites. The fracture surfaces of the specimens were observed using scanning electron microscope in order to identify fracture mechanisms involved during tension. NaOH treatment on kenaf fibre resulted in a significant improvement in longitudinal tensile modulus, strength and failure strain. This also indicates an improvement in toughness property as this can be observed through a larger area under graph of tensile stress-strain curve. The SEM micrographs showed that the interfacial adhesion between kenaf fibre and epoxy matrix was improved when the kenaf fibre was treated using NaOH. Therefore, NaOH treatment give positive effects on longitudinal and transverse tensile properties of kenaf composites. Kenaf composite treated with 7wt% NaOH showed the highest tensile strength for both longitudinal and transverse fibre directions.


Sign in / Sign up

Export Citation Format

Share Document