Detection of Amaranthus palmeri sp. Seedlings in Vegetable Farms Using Genetic Algorithm Optimized Support Vector Machine

2014 ◽  
Vol 666 ◽  
pp. 267-271 ◽  
Author(s):  
W.K Wong ◽  
Muralindran Mariappan ◽  
Ali Chekima ◽  
Manimehala Nadarajan ◽  
Brendan Khoo

This research is a part of a larger research scope to recognise individual weed species for weed scouting and spot weeding. Support Vector Machines are used to classify the presence of specified weeds(Amaranthus palmeri )by analysing the shape of the weeds. Weed leaves are extracted using image dilation and erosion methods. Several shape feature types were proposed and a total of 59 features were used as the feature pool. The feature selection and fine tuning of the Support Vector Machine are performed using Genetic Algorithm. The outcome is a generalised classifier that enables classification of weed leaves with an average of 90.5% classification rate.

Author(s):  
Wida Prima Mustika

Energy consumption is a demand for the amount of energy that must supply the building at any given time. Building energy consumption has continued increased over the last few decades all over the world, and Heating, Ventilating, and Air-Conditioning (HVAC), which has a catalytic role in regulating the temperature in the room, mostly accounted for of building energy use. Models created for in this study support vector machine and support vector machine-based models of genetic algorithm to obtain the value of accuracy or error rate or the smallest error value Root Mean Square Error (RMSE) in predicting energy consumption in buildings is more accurate. After testing the two models of support vector machines and support vector machines based on the genetic algorithm is the testing results obtained by using support vector machines where RMSE value obtained was 2,613. Next was the application of genetic algorithms to the optimization parameters C and γ values obtained RMSE error of 1.825 and a genetic algorithm for feature selection error RMSE values obtained for 1,767 of the 7 predictor variables and the selection attribute or feature resulting in the election of three attributes used. After that is done the optimization parameters and the importance of the value of feature selection mistake or error of the smallest RMSE of 1.537. Thus the support vector machine algorithm based on genetic algorithm can give a solution to the problems in the prediction of energy consumption rated the smallest mistake or error.


2009 ◽  
Vol 07 (05) ◽  
pp. 773-788 ◽  
Author(s):  
PENG CHEN ◽  
CHUNMEI LIU ◽  
LEGAND BURGE ◽  
MOHAMMAD MAHMOOD ◽  
WILLIAM SOUTHERLAND ◽  
...  

Protein fold classification is a key step to predicting protein tertiary structures. This paper proposes a novel approach based on genetic algorithms and feature selection to classifying protein folds. Our dataset is divided into a training dataset and a test dataset. Each individual for the genetic algorithms represents a selection function of the feature vectors of the training dataset. A support vector machine is applied to each individual to evaluate the fitness value (fold classification rate) of each individual. The aim of the genetic algorithms is to search for the best individual that produces the highest fold classification rate. The best individual is then applied to the feature vectors of the test dataset and a support vector machine is built to classify protein folds based on selected features. Our experimental results on Ding and Dubchak's benchmark dataset of 27-class folds show that our approach achieves an accuracy of 71.28%, which outperforms current state-of-the-art protein fold predictors.


Molecules ◽  
2020 ◽  
Vol 25 (6) ◽  
pp. 1442 ◽  
Author(s):  
Tao Shen ◽  
Hong Yu ◽  
Yuan-Zhong Wang

Gentiana, which is one of the largest genera of Gentianoideae, most of which had potential pharmaceutical value, and applied to local traditional medical treatment. Because of the phytochemical diversity and difference of bioactive compounds among species, which makes it crucial to accurately identify authentic Gentiana species. In this paper, the feasibility of using the infrared spectroscopy technique combined with chemometrics analysis to identify Gentiana and its related species was studied. A total of 180 batches of raw spectral fingerprints were obtained from 18 species of Gentiana and Tripterospermum by near-infrared (NIR: 10,000–4000 cm−1) and Fourier transform mid-infrared (MIR: 4000–600 cm−1) spectrum. Firstly, principal component analysis (PCA) was utilized to explore the natural grouping of the 180 samples. Secondly, random forests (RF), support vector machine (SVM), and K-nearest neighbors (KNN) models were built while using full spectra (including 1487 NIR variables and 1214 FT-MIR variables, respectively). The MIR-SVM model had a higher classification accuracy rate than the other models that were based on the results of the calibration sets and prediction sets. The five feature selection strategies, VIP (variable importance in the projection), Boruta, GARF (genetic algorithm combined with random forest), GASVM (genetic algorithm combined with support vector machine), and Venn diagram calculation, were used to reduce the dimensions of the data variable in order to further reduce numbers of variables for modeling. Finally, 101 NIR and 73 FT-MIR bands were selected as the feature variables, respectively. Thirdly, stacking models were built based on the optimal spectral dataset. Most of the stacking models performed better than the full spectra-based models. RF and SVM (as base learners), combined with the SVM meta-classifier, was the optimal stacked generalization strategy. For the SG-Ven-MIR-SVM model, the accuracy (ACC) of the calibration set and validation set were both 100%. Sensitivity (SE), specificity (SP), efficiency (EFF), Matthews correlation coefficient (MCC), and Cohen’s kappa coefficient (K) were all 1, which showed that the model had the optimal authenticity identification performance. Those parameters indicated that stacked generalization combined with feature selection is probably an important technique for improving the classification model predictive accuracy and avoid overfitting. The study result can provide a valuable reference for the safety and effectiveness of the clinical application of medicinal Gentiana.


2016 ◽  
Vol 78 (5-10) ◽  
Author(s):  
Farzana Kabir Ahmad ◽  
Abdullah Yousef Awwad Al-Qammaz ◽  
Yuhanis Yusof

Human-computer intelligent interaction (HCII) is a rising field of science that aims to refine and enhance the interaction between computer and human. Since emotion plays a vital role in human daily life, the ability of computer to interpret and response to human emotion is a crucial element for future intelligent system. Accordingly, several studies have been conducted to recognise human emotion using different technique such as facial expression, speech, galvanic skin response (GSR), or heart rate (HR). However, such techniques have problems mainly in terms of credibility and reliability as people can fake their feeling and response. Electroencephalogram (EEG) on the other has shown to be a very effective way in recognising human emotion as this technique records the brain activity of human and they can hardly be deceived by voluntary control. Regardless the popularity of EEG in recognizing human emotion, this study field is relatively challenging as EEG signal is nonlinear, involves myriad factors and chaotic in nature. These issues have led to high dimensional problem and poor classification results. To address such problems, this study has proposed a novel computational model, which consist of three main stages, namely a) feature extraction; b) feature selection and c) classifier. Discrete wavelet packet transform (DWPT) has been used to extract EEG signals feature and ultimately 204,800 features from 32 subject-independent have been obtained. Meanwhile, Genetic Algorithm (GA) and Least squares support vector machine (LS-SVM) have been used as a feature selection technique and classifier respectively. This computational model is tested on the common DEAP pre-processed EEG dataset in order to classify three levels of valence and arousal. The empirical results have shown that the proposed GA-LSSVM, has improved the classification results to 49.22% and 54.83% for valence and arousal respectively, whereas is it observed that 46.33% of valence and 48.30% of arousal classification were achieved when no feature selection technique is applied on the identical classifier


Sign in / Sign up

Export Citation Format

Share Document