Fuzzy Controller for Semi-Active Automobile Suspension System under Random Profiled Road Input

2014 ◽  
Vol 668-669 ◽  
pp. 474-477
Author(s):  
Qi Hua Ma ◽  
Jing Luo ◽  
Chun Yan Zhang

The suspension system is one of the most important parts of the automobile. The suspension system has an important influence on the ride comfort and maneuverable stability of the automobile. As structure parameters of traditional passive suspension cannot adaptively change with external conditions, the improvement of dynamic performance is difficult. Tow-DOF and four-DOF suspension of vehicle model is set up in this paper. Under random profiled road input simulated by using Runge-Kutta method, the control laws of fuzzy controller are adjusted by using different weight coefficients and use Matlab software to simulate the performances. Then, the results are compared and the performances are analyzed between passive suspension and semi-active suspension. The simulation results show the semi-active suspension is more effective for decreasing the vibration of vehicle body than the passive suspension, and designed fuzzy controller is effective for controlling the active controller of the semi-active suspension.

Author(s):  
Alireza Rezaee ◽  
Mazyar Pajohesh

In this paper, fuzzy logic is used to control active suspension of one-quarter car model. The main role of a car suspension system is to improve the ride comfort and to better the handling property. It usually consists of a spring and a damper to improve the properties of suspension system. The fuzzy logic method is one of the most active research and developments areas on artificial and intelligence at the present time, particularly in the automobile industry. One quarter of car if modeled by springs, masses, dampers and force actuator and the state space equations are derived by lagrangian method. The ride comfort is improved by means of the reduction of the body acceleration caused by the car body when road disturbance from uneven road surfaces, pavement point etc. act on the tires of running car. Here, a logic fuzzy controller is designed in which, the number of rule bases are reduced in comparison with some traditional one which have been introduced in other papers. At the end, a comparison of active suspension fuzzy control and traditional passive suspension is shown using MATLAB simulations. Results show that, active suspension improves the ride comfort by reducing acceleration, compared with the performance of passive suspension.


2010 ◽  
Vol 39 ◽  
pp. 50-54 ◽  
Author(s):  
Shao Yi Bei ◽  
Jing Bo Zhao ◽  
Lan Chun Zhang ◽  
Shao Hua Liu

Using the multi-body simulation software SIMPACK as platform, a whole CHANGHE mini-car model was built. A fuzzy controller was adopted based on MATLAB/SIMULINK software to control the full car model. Pulse input running test simulation was carried out under co-simulation of SIMAT. The results showed that compared to passive suspension, with the speed 40km/h, the body vertical acceleration, body pitch angular velocity, standard deviation and peak were respectively decreased by 10.76%, 18.03% and 20.48%, 12.13%. The semi-active suspension system with fuzzy controller had better performance than passive suspension, reduced vibration effectively and improved automotive ride comfort.


Author(s):  
Gurubasavaraju Tharehalli mata ◽  
Vijay Mokenapalli ◽  
Hemanth Krishna

This study assesses the dynamic performance of the semi-active quarter car vehicle under random road conditions through a new approach. The monotube MR damper is modelled using non-parametric method based on the dynamic characteristics obtained from the experiments. This model is used as the variable damper in a semi-active suspension. In order to control the vibration caused under random road excitation, an optimal sliding mode controller (SMC) is utilised. Particle swarm optimisation (PSO) is coupled to identify the parameters of the SMC. Three optimal criteria are used for determining the best sliding mode controller parameters which are later used in estimating the ride comfort and road handling of a semi-active suspension system. A comparison between the SMC, Skyhook, Ground hook and PID controller suggests that the optimal parameters with SMC have better controllability than the PID controller. SMC has also provided better controllability than the PID controller at higher road roughness.


2015 ◽  
Vol 1115 ◽  
pp. 440-445 ◽  
Author(s):  
Musa Mohammed Bello ◽  
Amir Akramin Shafie ◽  
Raisuddin Khan

The main purpose of vehicle suspension system is to isolate the vehicle main body from any road geometrical irregularity in order to improve the passengers ride comfort and to maintain good handling stability. The present work aim at designing a control system for an active suspension system to be applied in today’s automotive industries. The design implementation involves construction of a state space model for quarter car with two degree of freedom and a development of full state-feedback controller. The performance of the active suspension system was assessed by comparing it response with that of the passive suspension system. Simulation using Matlab/Simulink environment shows that, even at resonant frequency the active suspension system produces a good dynamic response and a better ride comfort when compared to the passive suspension system.


2014 ◽  
Vol 602-605 ◽  
pp. 1313-1316 ◽  
Author(s):  
Xiao Dong Gao ◽  
Liang Gu ◽  
Ji Fu Guan ◽  
Jun Feng Gao

A half tracked vehicle model was established based on LMS, a co-simulation interface between control algorithm of MATLAB and physical model of LMS was set up. Fuzzy controller with PID regulator was proposed to achieve controlling strategy based on half tracked vehicle model. With suspension stroke and its change rate as input parameters of fuzzy controller, the dynamic adjusting parameters of PID controller are acquired through fuzzy controller, then a semi-active suspension vehicle adaptive control system was formed. The simulation result shows that the adaptive control system can effectively coordinate the contradiction acceleration and dynamic travel in different bands, the ride comfort tracked vehicle is significantly improved.


2011 ◽  
Vol 383-390 ◽  
pp. 2012-2017 ◽  
Author(s):  
Guo Quan Yang ◽  
You Qun Zhao

In this paper, a semi-active suspension system has been proposed to improve the ride comfort, and a 2 DOF vehicle system is designed to simulate the actions of vehicle suspension system. The purpose of a suspension system is to support the vehicle body and increase ride comfort. The aim of the work described in the paper was to illustrate the application of fuzzy logic technique to the control of a continuously damping automotive suspension system. The ride comfort is improved by means of the reduction of the body acceleration caused by the car body when road disturbances from smooth road and real road roughness. Based on MATLAB fuzzy control toolbox, fuzzy controller is designed. Simulation analysis of suspension system is preceded by using MATLAB/Simulink7.0. The result shows that this control can improve the body acceleration, suspension distortion etc.


Author(s):  
N.M. Ghazaly ◽  
A.S Ahmed ◽  
A.S Ali ◽  
G.T Abd El- Jaber

In recent years, the use of active control mechanisms in active suspension systems has attracted considerable attention. The main objective of this research is to develop a mathematical model of an active suspension system that is subjected to excitation from different road profiles and control it using H∞ technique for a quarter car model to improve the ride comfort and road handling. Comparison between passive and active suspension systems is performed using step, sinusoidal and random road profiles. The performance of the H∞ controller is compared with the passive suspension system. It is found that the car body acceleration, suspension deflection and tyre deflection using active suspension system with H∞ technique is better than the passive suspension system.


2011 ◽  
Vol 110-116 ◽  
pp. 671-676
Author(s):  
Nemat Changizi ◽  
Asef Zare ◽  
Nooshin Sheiie ◽  
Mahbubeh Moghadas

The main aim of suspension system is to isolate a vehicle body from road irregularities in order to maximize passenger ride comfort and retain continuous road wheel contact in order to provide road holding. The aim of the work described in the paper was to illustrate the application of fuzzy logic technique to the control of a continuously damping automotive suspension system. The ride comfort is improved by means of the reduction of the body acceleration caused by the car body when road disturbances from smooth road and real road roughness. The paper describes also the model and controller used in the study and discusses the vehicle response results obtained from a range of road input simulations. In the conclusion, a comparison of active suspension fuzzy control and Proportional Integration derivative (PID) control is shown using MATLAB simulations.


Author(s):  
Hao Chen ◽  
Mingde Gong ◽  
Dingxuan Zhao ◽  
Jianxu Zhu

This paper proposes an attitude control strategy based on road level for heavy rescue vehicles. The strategy aims to address the problem of poor ride comfort and stability of heavy rescue vehicles in complex road conditions. Firstly, with the pressure of the suspension hydraulic cylinder chamber without a piston rod as the parameter, Takagi–Sugeno fuzzy controller classification and adaptive network-based fuzzy inference system controller classification are used to recognise the road level. Secondly, particle swarm optimisation is adopted to obtain the optimal parameters of the active suspension system of vehicle body attitude control under different road levels. Lastly, the parameters of the active suspension system are selected in accordance with the road level recognised in the driving process to improve the adaptive adjustment capability of the active suspension system at different road levels. Test results show that the root mean square values of vertical acceleration, pitch angle and roll angle of the vehicle body are reduced by 59.9%, 76.2% and 68.4%, respectively. This reduction improves the ride comfort and stability of heavy rescue vehicles in complex road conditions.


2019 ◽  
Vol 11 (2) ◽  
pp. 55
Author(s):  
Nur Uddin

The optimal control design of the ground-vehicle active suspension system is presented. The active suspension system is to improve the vehicle ride comfort by isolating vibrations induced by the road profile and vehicle velocity. The vehicle suspension system is approached by a quarter car model. Dynamic equations of the system are derived by applying Newton’s second law. The control law of the active suspension system is designed using linear quadratic regulator (LQR) method. Performance evaluation is done by benchmarking the active suspension system to a passive suspension system. Both suspension systems are simulated in computer. The simulation results show that the active suspension system significantly improves the vehicle ride comfort of the passive suspension system by reducing 50.37% RMS of vertical displacement, 45.29% RMS of vertical velocity, and 1.77% RMS of vertical acceleration.


Sign in / Sign up

Export Citation Format

Share Document