The Research of Origin of Deep Natural Gas of Qianbei Sub-Sag in the South of Songliao Basin

2014 ◽  
Vol 675-677 ◽  
pp. 1341-1346
Author(s):  
Wu Yi ◽  
Wei Chao Tian

This paper analyses the origins of deep natural gas in Qianbei Subsag using a variety of analytical data such as the natural gas components, the isotope and the light hydrocarbon analysis combining with the development characteristics of hydrocarbon source rocks. The study results show as the following: The abundance of organic matter from hydrocarbon source rocks in Qianbei Subsag is high and dominated by humus type. Part of good hydrocarbon source rocks of Type II1 and Type II2 are developed in Yingcheng Formation and these are the major gas source rocks that is in the stage of postmaturity in evolution degree. The natural gas component is dominated by methane and non-hydrocarbon gas content is low. The isotope values of ethane are lighter and methane and ethane have an obvious phenomenon of carbon isotopic reversal. Parent material types of methane and ethane are from different sources. The sources of methane are biased to humic parent material while the sources of ethane are biased to sapropelic parent material.

2021 ◽  
Vol 9 ◽  
Author(s):  
Wang Xiaobo ◽  
Li Jian ◽  
Yang Chunxia ◽  
Li Zhisheng ◽  
Chen Jianfa ◽  
...  

Natural gases in China are mainly coal-derived gas, with assistance from oil-typed gas. At present, many genetic identification methods, from hydrocarbon composition and isotope to light hydrocarbon and biomarker indexes, have been formed, but combined methods from non-hydrocarbon gases are lacking. Based on compositions and isotopes geochemical characteristics and the differences of non-hydrocarbon nitrogen gas in coal-derived gas and oil-typed gas, and combining the isotopic geochemical characteristics of non-hydrocarbon helium, the comprehensive identification methods of coal-derived gas and oil-typed gas for hydrocarbon gases according to the associated non-hydrocarbon gases of nitrogen and helium are established and the preliminary applications have been engaged. The main recognitions are as follows:1)Coal-derived gas generally has relatively lower nitrogen abundance, mainly distributed from 0 to 31.2% with main frequency from 0 to 2%. Oil-typed gas, on the other hand, usually has relatively higher nitrogen abundance, mainly distributed from 1.1 to 57.1% with main frequency from 2 to 16%. 2) Coal-derived gas generally has relatively heavier nitrogen isotope values, mainly distributed from -8 to 19.3‰ with main frequency from -8 to 8‰.Oil-typed gas usually has relatively lower nitrogen isotope values, mainly distributed from -10.6 to 4.6‰ with main frequency from -8 to 4‰.3)The geochemical characteristic differences of coal-derived gas and oil-typed gas are mainly due to the fact that the sapropel parent material is relatively rich in nitrogen element and rich in light δ14N, while the humic parent material is relatively poor in nitrogen element and rich in heavy δ15N. The differences on thermal maturity of source rocks, the redox conditions of source rock sedimentary environment, and the salinity of water body are also important effective factors.4)Differences on nitrogen abundances and isotopes in coal-derived gas and oil-typed gas have great significance in genetic identification. The genetic identification chart of R/Ra-δ15N for organic and inorganic nitrogen in natural gas and the comprehensive joint identification charts of R/Ra-δ15N-N2 of nitrogen and helium for coal-derived gas and oil-typed gas have been established, and are of great reference in investigating the origins and sources of natural gas and guiding natural gas exploration in China.


Geofluids ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Jingkui Mi ◽  
Kun He ◽  
Yanhuan Shuai ◽  
Jinhao Guo

In this study, a methane (CH4) cracking experiment in the temperature range of 425–800°C is presented. The experimental result shows that there are some alkane and alkene generation during CH4 cracking, in addition to hydrogen (H2). Moreover, the hydrocarbon gas displays carbon isotopic reversal ( δ 13 C 1 > δ 13 C 2 ) below 700°C, while solid carbon appears on the inner wall of the gold tube above 700°C. The variation in experimental products (including gas and solid carbon) with increasing temperature suggests that CH4 does not crack into carbon and H2 directly during its cracking, but first cracks into methyl (CH3⋅) and proton (H+) groups. CH3⋅ shares depleted 13C for preferential bond cleavage in 12C–H rather than 13C–H. CH3⋅ combination leads to depletion of 13C in heavy gas and further causes the carbon isotopic reversal ( δ 13 C 1 > δ 13 C 2 ) of hydrocarbon gas. Geological analysis of the experimental data indicates that the amount of heavy gas formed by the combination of CH3⋅ from CH4 early cracking and with depleted 13C is so little that can be masked by the bulk heavy gas from organic matter (OM) and with enriched 13C at R o < 2.5 % . Thus, natural gas shows normal isotope distribution ( δ 13 C 1 < δ 13 C 2 ) in this maturity stage. CH3⋅ combination (or CH4 polymerization) intensifies on exhaustion gas generation from OM in the maturity range of R o > 2.5 % . Therefore, the carbon isotopic reversal of natural gas appears at the overmature stage. CH4 polymerization is a possible mechanism for carbon isotopic reversal of overmature natural gas. The experimental results indicate that although CH4 might have start cracking at R o > 2.5 % , but it cracks substantially above 6.0% R o in actual geological settings.


Georesursy ◽  
2019 ◽  
Vol 21 (1) ◽  
pp. 47-63
Author(s):  
Alexander P. Afanasenkov ◽  
Tatyana P. Zheglova ◽  
Alexander L. Petrov

Based on analyzes of carbon isotopic composition, distribution and composition of hydrocarbon biomarkers of oils and bitumoids from source rocks of the Mesozoic sediments in the western part of the Yenisei-Khatanga oil and gas region and the northeast of the West-Siberian plate, two groups of oils and bitumoids are identified, genetically associated with organic matter, mainly sapropel type (I group) and mainly humus type (II group). The genetic correlation of oils and bitumoids has been made. Possible foci of generation, which participated in the formation of hydrocarbon deposits, have been determined.


2001 ◽  
Vol 41 (1) ◽  
pp. 523 ◽  
Author(s):  
C.J. Boreham ◽  
J.M. Hope ◽  
B. Hartung-Kagi

Natural gases from all of Australia’s major gas provinces in the Adavale, Amadeus, Bass, Bonaparte, Bowen/ Surat, Browse, Canning, Carnarvon, Cooper/Eromanga, Duntroon, Gippsland, Otway and Perth basins have been examined using molecular and carbon isotopic compositions in order to define their source, maturity and secondary alteration processes.The molecular compositions of the gaseous hydrocarbons range from highly wet to extremely dry. On average, reservoired gases predominantly derived from land plants are slightly wetter than those derived from marine sources. The non-hydrocarbon gases CO2 and N2 were sourced from both inorganic and organic materials. A mantle and/or igneous origin is likely in the majority of gases with CO2 contents >5%. For gases with lower CO2 contents, an additional organic input, associated with hydrocarbon generation, is recognised where δ13C CO2 is A strong inter-dependency between source and maturity has been recognised from the carbon isotopic composition of individual gaseous hydrocarbons. This relationship has highlighted some shortcomings of common graphical tools for interpretation of carbon isotopic data. The combination of the carbon isotopic composition of gaseous hydrocarbons and the low molecular weight nalkanes in the accompanying oil allows our knowledge of oil-source correlations and oil families to be used to correlate gases with their sources. This approach has identified source rocks for gas ranging in age from the Ordovician in the Amadeus Basin to Late Cretaceous- Early Tertiary sources in the Bass and Gippsland basins. The carbon isotopic composition of organic matter, approximated using the δ13C of iso-butane, shows a progressive enrichment in 13C with decreasing source age, together with marine source rocks for gas being isotopically lighter than those from land plant sources. The Permian was a time when organic matter was enriched in 13C and isotopically uniform on a regional scale.Secondary, in-reservoir alteration has played a major role in the modification of Australian gas accumulations. Thus, biodegradation, prominent in the Bowen/Surat, Browse, Carnarvon and Gippsland basins, is found in both hydrocarbon and non-hydrocarbon gases. This is recognised by an increase in gas dryness, elevated isoalkane to n-alkane ratio, differential increase in δ13C of the individual wet gas components, a decrease in δ13C of methane and a reduction in CO2 content concomitant with enrichment in 13C. Evidence of water-washing has been identified in accumulations in the Bonaparte and Cooper/Eromanga basins, resulting in an increase in the wet gas content. Seal integrity is also a major risk for the preservation of natural gas accumulations, although its effect on gas composition is only evident in extreme cases, such as the Amadeus Basin, where preferential leakage of methane in the Palm Valley field has resulted in the residual methane becoming enriched in 13C.The greater mobility of gas within subsurface rocks can have a detrimental effect on oil composition whereby gas-stripping of light hydrocarbons is common amongst Australian oil accumulations. Alternatively, the availability of gas, derived from a source rock common to or different from oil, was likely to have been a prime factor controlling the regional distribution of oil, whereby mixing of both results in increased oil mobility and can lead to a greater access to the number and types of traps in the subsurface.


Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 843
Author(s):  
Jia Tao ◽  
Jinchuan Zhang ◽  
Junlan Liu ◽  
Yang Liu ◽  
Wei Dang ◽  
...  

Molecular and carbon isotopic variation during degassing process have been observed in marine shale reservoirs, however, this behavior remains largely unexplored in terrestrial shale reservoirs. Here, we investigate the rock parameters of five terrestrial shale core samples from the Xiahuayuan Formation and the geochemical parameters of thirty natural gas samples collected during field canister degassing experiments. Based on these new data, the gas composition and carbon isotope variation during canister degassing are discussed and, further, the relationship between petrophysics and the carbon isotope variation is explored. The results show that methane content first increases and then decreases, the concentrations of carbon dioxide (CO2) and nitrogen gas (N2) peak in the early degassing stage, while heavier hydrocarbons gradually increase over time. Shale gas generated from humic source rocks contains more non-hydrocarbon and less heavy hydrocarbon components than that generated from sapropelic source rocks with similar maturity. Time-series sampling presents an upward increase in δ13C1 value during the degassing process with the largest variation up to 5.7‰, while the variation in δ13C3 and δ13C2 is insignificant compared to δ13C1. Moreover, we find that there is only a small variation in δ13C1 in shale samples with high permeability and relatively undeveloped micropores, which is similar to the limited δ13C1 variation in conventional natural gas. For our studied samples, the degree of carbon isotope variation is positively correlated with the TOC content, micropore volume, and micropore surface, suggesting that these three factors may play a significant role in carbon isotope shifts during shale gas degassing. We further propose that the strong 13C1 and C2+depletion of shale gas observed during the early degassing stage may have resulted from the desorption and diffusion effect, which may lead to deviation in the identification of natural gas origin. It is therefore shale gas of the late degassing stage that would be more suitable for study to reduce analytic deviations. In most samples investigated, significant isotopic variation occurred during the degassing stage at room temperature, indicating that the adsorbed gas had already been desorbed at this stage Our results therefore suggest that more parameters may need to be considered when evaluating the lost gas of shales.


2021 ◽  
Vol 64 (3) ◽  
pp. 470-493 ◽  
Author(s):  
Jianping Chen ◽  
Xulong Wang ◽  
Jianfa Chen ◽  
Yunyan Ni ◽  
Baoli Xiang ◽  
...  

2000 ◽  
Vol 31 (1) ◽  
pp. 1-14 ◽  
Author(s):  
A.P. Radliński ◽  
C.J. Boreham ◽  
P. Lindner ◽  
O. Randl ◽  
G.D. Wignall ◽  
...  

Geology ◽  
2011 ◽  
Vol 39 (12) ◽  
pp. 1167-1170 ◽  
Author(s):  
Helge Løseth ◽  
Lars Wensaas ◽  
Marita Gading ◽  
Kenneth Duffaut ◽  
Michael Springer

2007 ◽  
Vol 52 (S1) ◽  
pp. 77-91 ◽  
Author(s):  
BaoMin Zhang ◽  
ShuiChang Zhang ◽  
LiZeng Bian ◽  
ZhiJun Jin ◽  
DaRui Wang

Sign in / Sign up

Export Citation Format

Share Document