Dynamic Analysis and Structural Optimization for a Logging while Drilling Neutron Instrument

2014 ◽  
Vol 684 ◽  
pp. 70-75
Author(s):  
Chao Wei ◽  
Qiu Yue Sun ◽  
Yuan Ying Qiu ◽  
Jun Jie Ye

Logging while drilling (LWD) neutron instrument is a core equipment of the pulsed neutron logging technology, its anti-vibration performance has a direct impact on the measurement accuracy. For improving the anti-vibration performance, a reverse design method was proposed to avoid the resonance region due to increasing structural stiffness. The dynamic performance of the original instrument was analyzed, the weaknesses of its anti-vibration performance were determined and its topologies were improved. Moreover, the structural parameters of the instrument were optimized to raise the structural base frequency. The results show that the base frequency of the instrument increases high enough, the influence curves and surfaces of the base frequency with design variables provide a theoretical reference for the design of a LWD neutron instrument.

Author(s):  
Qihang Liu ◽  
G.Q. Xu ◽  
Jie Wen ◽  
Yanchen Fu ◽  
Laihe Zhuang ◽  
...  

Abstract This paper presents a multi-condition design method for the aircraft heat exchanger (HEX), marking with light weight, compactness and wide range of working conditions. The quasi-traversal genetic algorithm (QT-GA) method is introduced to obtain the optimal values of five structural parameters including the height, the tube diameter, the tube pitch, and the tube rows. The QT-GA method solves the deficiency of the conventional GA in the convergence, and gives a clear correlation between design variables and outputs. Pressure drops, heat transfer and the weight of the HEX are combined in a single objective function of GA in the HEX design, thus the optimal structure of the HEX suitable for all the working conditions can be directly obtained. After optimization, the weight of the HEX is reduced to 2.250 kg, more than 20% lower than a common weight of around 3 kg. Based on the optimal structure, the off-design performance of the HEX is further analyzed. Results show that the extreme working conditions for the heat transfer and the pressure drops are not consistent. It proves the advance of the multi-condition design method over traditional single-condition design method. In general, the proposed QT-GA design method is an efficient way to solve the multi-condition problems related to the aircraft HEX or other energy systems.


2008 ◽  
Vol 33-37 ◽  
pp. 249-254
Author(s):  
Zhi Ping Yin ◽  
Qi Qing Huang ◽  
Bing Hui Zhang

Recent development in structure optimization offers the potential for significant improvements in the design of more durable structures. The present paper reveals the importance of structural optimization with crack propagation life of integrally stiffened panels. In the full paper, we explain in detail how to optimize structural fatigue life and design the structure of integrally stiffened panels which has the optimization life. The first topic is: the review of existing structural optimization design method. The second topic is: optimization methodology with crack propagation life. In our optimization methodology, the RSM (Response Surface Methodology) and GA (Genetic Algorithm) are successfully applied for structural optimization design with crack propagation life. The third topic is: damage tolerance optimization of integrally stiffened panels with crack propagation life. In this paper, structural parameters: the height and location of stringer, are the design variables. The structural weight is a fixed value. Through analyzing, the optimization structure with maximum life can not simply be chosen, and the maximum life would not increase all ways while the high of stringer increased. At last, the optimization structure, which has maximum crack propagation life, is given on the integrally stiffened panels.


2009 ◽  
Vol 626-627 ◽  
pp. 693-698
Author(s):  
Yong Yong Zhu ◽  
S.Y. Gao

Dynamic balance of the spatial engine is researched. By considering the special wobble-plate engine as the model of spatial RRSSC linkages, design variables on the engine structure are confirmed based on the configuration characters and kinetic analysis of wobble-plate engine. In order to control the vibration of the engine frame and to decrease noise caused by the spatial engine, objective function is choosed as the dimensionless combinations of the various shaking forces and moments, the restriction condition of which presents limiting the percent of shaking moment. Then the optimization design is investigated by the mathematical model for dynamic balance. By use of the optimization design method to a type of wobble-plate engine, the optimization process as an example is demonstrated, it shows that the optimized design method benefits to control vibration and noise on the engines and improve the performance practically and theoretically.


2011 ◽  
Vol 346 ◽  
pp. 379-384
Author(s):  
Shu Bo Xu ◽  
Yang Xi ◽  
Cai Nian Jing ◽  
Ke Ke Sun

The use of finite element theory and modal analysis theory, the structure of the machine static and dynamic performance analysis and prediction using optimal design method for optimization, the new machine to improve job performance, improve processing accuracy, shorten the development cycle and enhance the competitiveness of products is very important. Selected for three-dimensional CAD modeling software-UG NX4.0 and finite element analysis software-ANSYS to set up the structure of the beam finite element model, and then post on the overall structure of the static and dynamic characteristic analysis, on the basis of optimized static and dynamic performance is more superior double wall structure of the beam. And by changing the wall thickness and the thickness of the inner wall, as well as the reinforcement plate thickness overall sensitivity analysis shows that changes in these three parameters on the dynamic characteristics of post impact. Application of topology optimization methods, determine the optimal structure of the beam ultimately.


2014 ◽  
Vol 548-549 ◽  
pp. 383-388
Author(s):  
Zhi Wei Chen ◽  
Zhe Cui ◽  
Yi Jin Fu ◽  
Wen Ping Cui ◽  
Li Juan Dong ◽  
...  

Parametric finite element model for a commonly used telescopic boom structure of a certain type of truck-mounted crane has been established. Static analysis of the conventional design configuration was performed first. And then an optimization process has been carried out to minimize the total weight of the telescopic structures. The design variables include the geometric shape parameters of the cross-sections and the integrated structural parameters of the telescopic boom. The constraints include the maximum allowable equivalent stresses and the flexure displacements at the tip of the assembled boom structure in both the vertical direction and the circumferential direction of the rotating plane. Compared with the conventional design, the optimization design has achieved a significant weight reduction of up to 24.3%.


Author(s):  
Zunling Du ◽  
Yimin Zhang

Axial piston pumps (APPs) are the core energy conversion components in a hydraulic transmission system. Energy conversion efficiency is critically important for the performance and energy-saving of the pumps. In this paper, a time-varying reliability design method for the overall efficiency of APPs was established. The theoretical and practical instantaneous torque and flow rate of the whole APP were derived through comprehensive analysis of a single piston-slipper group. Moreover, as a case study, the developed model for the instantaneous overall efficiency was verified with a PPV103-10 pump from HYDAC. The time-variation of reliability for the pump was revealed by a fourth-order moment technique considering the randomness of working conditions and structure parameters, and the proposed reliability method was validated by Monte Carlo simulation. The effects of the mean values and variance sensitivity of random variables on the overall efficiency reliability were analyzed. Furthermore, the optimized time point and design variables were selected. The optimal structure parameters were obtained to meet the reliability requirement and the sensitivity of design variables was significantly reduced through the reliability-based robust design. The proposed method provides a theoretical basis for designers to improve the overall efficiency of APPs in the design stage.


Author(s):  
Salman Ahmed ◽  
Mihir Sunil Gawand ◽  
Lukman Irshad ◽  
H. Onan Demirel

Computational human factors tools are often not fully-integrated during the early phases of product design. Often, conventional ergonomic practices require physical prototypes and human subjects which are costly in terms of finances and time. Ergonomics evaluations executed on physical prototypes has the limitations of increasing the overall rework as more iterations are required to incorporate design changes related to human factors that are found later in the design stage, which affects the overall cost of product development. This paper proposes a design methodology based on Digital Human Modeling (DHM) approach to inform designers about the ergonomics adequacies of products during early stages of design process. This proactive ergonomics approach has the potential to allow designers to identify significant design variables that affect the human performance before full-scale prototypes are built. The design method utilizes a surrogate model that represents human product interaction. Optimizing the surrogate model provides design concepts to optimize human performance. The efficacy of the proposed design method is demonstrated by a cockpit design study.


Author(s):  
Jiajia Zheng ◽  
Yancheng Li ◽  
Jiong Wang

This paper presents the design and multi-physics optimization of a novel multi-coil magnetorheological (MR) damper with a variable resistance gap (VRG-MMD). Enabling four electromagnetic coils (EMs) with individual exciting currents, a simplified magnetic equivalent circuit was presented and the magnetic flux generated by each voltage source passing through each active gap was calculated as vector operations. To design the optimal geometry of the VRG-MMD, the multi-physics optimization problem including electromagnetics and fluid dynamics has been formulated as a multi-objective function with weighting ratios among total damping force, dynamic range, and inductive time constant. Based on the selected design variables (DVs), six cases with different weighting ratios were optimized using Bound Optimization BY Quadratic Approximation (BOBYQA) technique. Finally, the vibration performance of the optimal VRG-MMD subjected to sinusoidal and triangle displacement excitations was compared to that of the typical multi-coil MR damper.


Author(s):  
Kisun Song ◽  
Kyung Hak Choo ◽  
Jung-Hyun Kim ◽  
Dimitri N. Mavris

In modern automotive industry market, there have been a lot of state-of-art methodologies to perform a conceptual design of a car; functional methods and 3D scanning technology are widely used. Naturally, the issues frequently boiled down to a trade-off decision making problem between quality and cost. Besides, to incorporate the design method with advanced optimization methodologies such as design-of-experiments (DOE), surrogate modeling, how efficiently a method can morph or recreate a vehicle’s shape is crucial. This paper accomplishes an aerodynamic design optimization of rear shape of a sedan by incorporating a reverse shape design method (RSDM) with the aforementioned methodologies based on CFD analysis for aerodynamic drag reduction. RSDM reversely recovers a 3D geometry of a car from several 2D schematics. The backbone boundary lines of 2D schematic are identified and regressed by appropriate interpolation function and a 3D shape is yielded by a series of simple arithmetic calculations without losing the detail geometric features. Besides, RSDM can parametrize every geometric entity to efficiently manipulate the shape for application to design optimization studies. As the baseline, an Audi A6 is modeled by RSDM and explored through CFD analysis for model validation. Choosing six design variables around the rear shape, 77 design points are created to build neural networks. Finally, a significant amount of CD reduction is obtained and corresponding configuration is validated via CFD.


Sign in / Sign up

Export Citation Format

Share Document