Modeling System Reliability Using a Nonparametric Method

2014 ◽  
Vol 687-691 ◽  
pp. 1193-1197
Author(s):  
Wei Zhen You ◽  
Xiao Pin Zhong

System reliability is an important problem especially in reliability engineering. The frequency a system failure happens is represented by failure rate. We use failure rate instead of system reliability to analyze a particular system.Traditional parametric models cannot give a good fit to complex systems, wetherefore employed a nonparametric method in this paper. Gaussian smoothing is also applied on the failure rate curves. Compared with parametric models, the nonparametric model yields more accurateestimation of system failure rate.

2021 ◽  
Vol 11 (9) ◽  
pp. 4026
Author(s):  
Laura Carnevali ◽  
Lorenzo Ciani ◽  
Alessandro Fantechi ◽  
Gloria Gori ◽  
Marco Papini

Reliability Block Diagrams (RBDs) are widely used in reliability engineering to model how the system reliability depends on the reliability of components or subsystems. In this paper, we present librbd, a C library providing a generic, efficient and open-source solution for time-dependent reliability evaluation of RBDs. The library has been developed as a part of a project for reliability evaluation of complex systems through a layered approach, combining different modeling formalisms and solution techniques at different system levels. The library achieves accuracy and efficiency comparable to, and mostly better than, those of other well-established tools, and it is well designed so that it can be easily used by other libraries and tools.


Author(s):  
Divesh Garg ◽  
Reena Garg ◽  
Vanita Garg

Background: A briquette machine can be considered very useful in modern times as the need of energy consumption is increasing rapidly. Considering the harm to environment, study of briquette machine is the need of present times. In this paper, the operative unit is considered as briquette machine also known as bio-coal which is used for agroforestry waste. Objective: A single operative unit has been analyzed stochastically. The inspection of breakdown of a unit reveals the feasibility of the unit under the supervision of either ordinary or expert repairmen. Two types of fault are revealed by the repairmen either minor or major fault. Minor faults are repaired immediately by the same repairmen but whenever major fault held, the machine’s fault will be handled by expert person. Method: It is assumed that the repair needs no modification once served. Availability, Mean-time for system failure, and profits are analyzed by utilizing the Regenerative point graphical technique and semi-Markov process. Result: Study reveals that the Mean-time for system failure of the system model go on decreasing as failure rate increase and availability goes on decreasing as failure-rate increase. Moreover, the study shows that the systems profit goes down on increase of Failure-rate. Conclusion: Findings of the study supports the hypothesis that the limits of failure/repair/inspection rate will surely have effective profitability. Moreover, it is found that the utility of scale of operation can easily be derived. The practical importance of biomass briquettes for burning coal or wood is very well appreciated.


2013 ◽  
Vol 9 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Edward K. Cheng

AbstractWhether the nature of the risks associated with climbing high-altitude (8000 m) peaks is in some sense “controllable” is a longstanding debate in the mountaineering community. Well-known mountaineers David Roberts and Ed Viesturs explore this issue in their recent memoirs. Roberts views the primary risks as “objective” or uncontrollable, whereas Viesturs maintains that experience and attention to safety can make a significant difference. This study sheds light on the Roberts-Viesturs debate using a comprehensive dataset of climbing on Nepalese Himalayan peaks. To test whether the data is consistent with a constant failure rate model (Roberts) or a decreasing failure rate model (Viesturs), it draws on Total Time on Test (TTT) plots from the reliability engineering literature and applies graphical inference techniques to them.


2005 ◽  
Vol 59 (3) ◽  
pp. 339-364
Author(s):  
T. van der Hoeven ◽  
A. G. M. Steerneman

Author(s):  
Joseph Benedict Bassey ◽  
Isaac F. Odesola

Aims: Reliability assessment of power generation system may be performed with the concept of system adequacy, security or both. Grid being a major component in the power distribution chain is seen to have some influence on the state of the generation system reliability because of the perturbation that may arise from it. In this study, the generation system reliability is evaluated using both the system adequacy and security concept. Study Design: To capture the system security problems attributed to grid disturbance, the generation system is structured into two component systems (1 - generation component and 2 - transmission component) with a series arrangement. Methodology: The reliability indices such as, mean time to failure, mean time to repair, failure rate and repair rate are assessed on component bases and with respect to the entire generation system. Results: The effect of failure rate of the transmission component on the entire generation system failure rate was evaluated as 66.25%, 55.55%, 33.33%, 55.00% and 35.72% in year 2013, 2014, 2017 2018 and 2019 respectively for FIPL Power Plant and 52.94%, 82.35%, 61.38% and 100% effect was evaluated in the year 2016, 2017, 2018 and 2019 respectively for GT5 of Omoku Power Plant. Conclusion: These results showed that there is a significant influence of grid disturbances on the reliability state of the two gas turbine power plants in Nigeria. Measures on possible reliability state improvement of the power generation systems were suggested to include training and retraining of technical personnel on the management of major equipment in the generation and transmission stations. 


Author(s):  
Kalpesh P. Amrutkar ◽  
Kirtee K. Kamalja

One of the purposes of system reliability analysis is to identify the weaknesses or the critical components in a system and to quantify the impact of component’s failures. Various importance measures are being introduced by many researchers since 1969. These component importance measures provide a numerical rank to determine which components are more important to system reliability improvement or more critical to system failure. In this paper, we overview various components importance measures and briefly discuss them with examples. We also discuss some other extended importance measures and review the developments in study of various importance measures with respect to some of the popular reliability systems.


2010 ◽  
Vol 118-120 ◽  
pp. 596-600
Author(s):  
Jian Xin Zhu ◽  
Xue Dong Chen ◽  
Shi Yi Bao

An innovative nuisance trip calculation method based on Markov model was proposed in this paper which was used to evaluate the effect of repairment on system reliability. By analysis of the availabilities of classic 1 out of 2 (1oo2) repairable system, a new definition of spurious trip was put forwarded where online repair was considered. Compared with the benefits obtained by online repairment, the repair-caused-nuisance-trip was analyzed in this paper. Numerical calculation revealed that the online repair is helpful for anti-spurious trip in 1oo2 redundant system. Dangerous failures, if not repaired or cannot be online fixed, have complex influence on system reliability. The dangerous failure is sometimes benefit for anti-spurious performance if it is not repaired. But Mean Time To Failure Spurious (MTTFs) reduces with the increase of dangerous failure provided that dangerous failure rate is bigger than safe failure rate. Meanwhile, the finding that common cause can reduce the chance of nuisance trip was also proposed in this paper, though the influence is too small to be neglected.


Sign in / Sign up

Export Citation Format

Share Document