Synthesis and Characterization of Nano Mn3O4 for Lithium-Ion Batteries

2014 ◽  
Vol 687-691 ◽  
pp. 4331-4334
Author(s):  
Han Ping Zhu ◽  
Peng Ding ◽  
Song Fang ◽  
Hailin Liu

nanoMn3O4was prepared by a simple solvothermal method. The structure, morphology and electrochemical properties of the products were investigated by XRD, SEM and constant current discharge-charge test. The results of XRD and SEM shows that nanoMn3O4is high-purity, and it’s diameter is about 30 nm. It could deliver an initial discharge capacity of 1324.4 mAh g-1at the current density of 25.5 mA g-1, and the specific discharge capacity is 586.9 mAh g-1after 30 cycles at the current density of 30.4 mA g-1.

2015 ◽  
Vol 1120-1121 ◽  
pp. 281-285 ◽  
Author(s):  
Yue Zhang ◽  
Yu Jing Zhu ◽  
Yuan Xiang Gu ◽  
Rui Xin Chen

We synthesized nano-Li4Ti5O12 particles by solvothermal method. The as-prepared materials were characterized by XRD, SEM, TEM and electrochemical measurements. The Li4Ti5O12Li4Ti5O12 showed excellent rate capability and cycle ability. The as-preparedLi4Ti5O12 Li4Ti5O12 electrode exhibited highly initial discharge capacity 176 mAh/g at 0.1 C rate up to, which was slightly higher than its theoretical capacity (175 mAh/g). By increasing the C-rate, the cell showed 152, 143, 138 and 135 mAh/g at 0.5, 1, 1.5 and 2 C, respectively.


2017 ◽  
Vol 46 (38) ◽  
pp. 12908-12915 ◽  
Author(s):  
Ajay Kumar ◽  
O. D. Jayakumar ◽  
Jagannath Jagannath ◽  
Parisa Bashiri ◽  
G. A. Nazri ◽  
...  

Despite having the same carbon content, Li2Fe0.99Mg0.01SiO4/C delivered the highest initial discharge capacity and also exhibited the best rate capability and cycle stability.


2020 ◽  
Vol 49 (4) ◽  
pp. 1048-1055 ◽  
Author(s):  
Xin Yu ◽  
Fang Hu ◽  
Fuhan Cui ◽  
Jun Zhao ◽  
Chao Guan ◽  
...  

CuV2O6 nanowires as a cathode material for Zn-ion batteries display an initial discharge capacity of 338 mA h g−1 at a current density of 100 mA g−1 and an excellent cycle performance after 1200 cycles at 5 A g−1.


CrystEngComm ◽  
2019 ◽  
Vol 21 (3) ◽  
pp. 399-402
Author(s):  
Yanli Fu ◽  
Liqiong Wu ◽  
Shengang Xu ◽  
Shaokui Cao ◽  
Xinheng Li

LiNi0.5Mn1.5O4 microcubes grown from nanowires delivered an initial discharge capacity of 123 mAh g−1 at 1C and maintained 95% of the capacity after 50 cycles due to interfacial effect.


2012 ◽  
Vol 581-582 ◽  
pp. 570-573
Author(s):  
Jia Feng Zhang ◽  
Bao Zhang ◽  
Xue Yi Guo ◽  
Jian Long Wang ◽  
He Zhang Chen ◽  
...  

The LiFe0.98Ni0.01Nb0.01PO4/C was synthesized by carbon reduction route using FePO4•2H2O as precursor. The LiFe0.98Ni0.01Nb0.01PO4/C sample was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and electrochemical measurements. The XRD analysis, SEM and TEM images show that sample has the good crystal structure, morphology and carbon coating. The charge-discharge tests demonstrate that the powder has the better electrochemical properties, with an initial discharge capacity of 164.6 mAh•g−1 at current density of 0.1 C. The capacity retention reaches 99.8% after 100 cycles at 0.1C.


2012 ◽  
Vol 430-432 ◽  
pp. 937-940
Author(s):  
Heng Wang ◽  
Yan Li Ruan ◽  
Zhe Chi Shi

LiFePO4 material was synthesized at 650°C in an N2 atmosphere using a sol-gel method. This material showed a well developed XRD pattern (orthorhombic structure, Pnma) without peaks at 2θ=41°, indicating the absence of FeP or metallic Fe2P impurities. The Li/LiFePO4 cell showed a high initial discharge capacity of more than 140mAh/g and no capacity decrease until the 50th cycle (>99.0%).


2019 ◽  
Author(s):  
◽  
Khaleel Idan Hamad

Many synthesis techniques like sol-gel, co-precipitation, hydrothermal, pyrolysis, and many more have been used to synthesize batteries' active electrode materials. High surface area cathode materials with smaller nanoparticles are favored for their higher reactivity compared to materials with particles of larger size. Sol-gel and co-precipitation methods have been primarily adopted because they can produce the desirable particle size easily and on a large scale. This dissertation details an efficient and cost-effective process for using a newly developed sol-gel method that uses glycerol solvent instead of the conventionally used water. Glycerol has three hydroxyl groups (OH) instead of one in water. These can play an important role in nanoparticle formation at earlier stages by speeding up the reaction. One of the main reasons for capacity fade in batteries is cationic mixing between Ni2+ and Li+. This results in blocking of the Li+ path and ultimately poor cyclability. This capacity fade has been successfully minimized in our current work by taking advantage of the high heat released from glycerol to get partially crystalline nanoparticles that could mitigate cationic mixing at high temperatures. The first cathode material synthesized using glycerol solvent was LiMn1/3Ni1/3Co1/3O2 (LMNC) layered oxide cathode material. Temperature's effects on the particles' morphologies, sizes, and electrochemical performances have been studied at four different temperatures. LMN2 was annealed at 900 �C/8hr and shows desirable particles size of ~ 0.3 (�_m), an initial discharge capacity of 177.1 mAh/g in the first cycle, and a superior capacity retention of 83.7% after 100 cycles. The process takes eight hours, rather than >12hr when using other solvents to prepare LMNC material at high temperatures. The results also demonstrate the higher stability and lower cationic mixing after 100 cycles. To increase capacity and voltage, lithium-rich cathode materials with the formula Li1.2Mn0.51Ni0.145+xCo0.145-xO2 (x = 0 (LR2), 0.0725 (LR1)) have been successfully synthesized. In this material, cobalt (Co) content has been decreased by half and the larger produced particles have suppressed the total activation of Li2MnO3 phase in the first charge cycle. The specific discharge capacity retention of LR1 at 1C between 2 and 4.8 V was more than 100% after 100 cycles. Further improvements to LR1 cathode materials have led to an increase in the initial discharge capacity to 248 mAh/g at 0.1C. This is achieved by using an equimolecular combination of acetate and nitrate salt anions (LRACNI) with cornstarch. Cornstarch acts as a capping agent with the nitrate salt anions, and a gelling agent with acetate based anions. LRACNI shows an intermediate particle size with satisfactory capacity retention upon cycling and the lowest cationic mixing. LiNi0.8Co0.15Al0.05O2 (NCA) is one of the most commercialized cathode materials for lithium-ion batteries. It is challenging to have a high Ni content with Li in one combination electrode because cationic mixing increases proportionally. The use of glycerol has diminished the cationic mixing. High capacity retentions of 97% at 1C after 50 cycles, 87.6% at 0.3C after 100 cycles, and 93.6% at 0.1C after 70 cycles have been successfully achieved, which are better than those previously reported.


2011 ◽  
Vol 295-297 ◽  
pp. 700-703
Author(s):  
Sheng Kui Zhong ◽  
Yue Bin Xu ◽  
Yan Wei Li ◽  
Chang Jiu Liu ◽  
Yan Hong Li

LiNi0.4Co0.2Mn0.4O2 sampleswas synthesized via urea co-precipitation method. The XRD, SEM and electrochemical measurements were used to examine the structure,morphology and electrochemical characteristics, respectively. LiNi0.4Co0.2Mn0.4O2 powders show excellent electrochemical performances. The optimum sintering temperature and sintering time are 800°C and 20 h, respectively. The LiNi0.4Co0.2Mn0.4O2 powders shows the discharge capacity of 145.1 mAh·g-1in the range of 3.0-4.5 V at the first cycle, and the discharge capacity remains 132.3 mAh·g-1after 30 cycles. The urea co-precipitation method is suitable for the preparation of LiNi0.4Co0.2Mn0.4O2 cathode materials with good electrochemical performances for lithium ion batteries.


2007 ◽  
Vol 336-338 ◽  
pp. 517-520 ◽  
Author(s):  
Xiang Ming He ◽  
Wei Hua Pu ◽  
Fang Hui Zhao ◽  
Jie Rong Ying ◽  
Chang Yin Jiang ◽  
...  

Spherical LiNi0.8Co0.2O2 powders with particle size of 8~10μm were prepared based on controlled crystallization, and coated with Al2O3 by Al(OH)3 sol, that was prepared from Al(NO3)3 and NaOH, at first time. SEM, XRD and surface element analysis showed that the nano-sized Al2O3 was coated uniformly on the surface of LiNi0.8Co0.2O2 powder. At 25 °C, the initial discharge capacity decreased from 160 to 149 mAh g-1 after coating of Al2O3. The initial discharge capacity decreased from 168 to 163 mAh g-1 after coating of Al2O at 55 °C. After coating of Al2O3, the capacity retentions increased from 83.8% to 92.6% at the 50th cycle at 25°C, and from 36.3% to 90.8% at the 10th cycle at 55°C. This paves effective way to improve the performance of LiNi0.8Co0.2O2 material for rechargeable lithium ion batteries.


2008 ◽  
Vol 388 ◽  
pp. 85-88 ◽  
Author(s):  
Masayuki Kojima ◽  
Izumi Mukoyama ◽  
Kenichi Myoujin ◽  
Takayuki Kodera ◽  
Takashi Ogihara

Internal combustion type spray pyrolysis apparatus was used to prepare cathode materials for lithium ion batteries. Spherical LiNi0.5Mn1.5O4 precursor powders with an average size of about 2 m were successfully produced by this technique. After calcination at 800°C, LiNi0.5Mn1.5O4 precursor powders crystallized to a spinel structure. The spherical morphology changed to an irregular morphology at temperatures higher than 900°C. The discharge capacity of the LiNi0.5Mn1.5O4 cathode was 130 mAh/g at 1C. After 300 cycles at 1C, 90% of the initial discharge capacity was maintained, and after 100 cycles at 6C, 70% of the discharge capacity at 1C was maintained.


Sign in / Sign up

Export Citation Format

Share Document