Effects of the Processing Methods on the Gas Permeability of PLA/Sepiolite Thin Films: Solution Casting versus Thermo Compression

2014 ◽  
Vol 695 ◽  
pp. 187-190
Author(s):  
Nima Moazeni ◽  
Zurina Mohamad ◽  
Nazila Dehbari

A biodegradable poly-lactic acid (PLA)/Sepiolite nanocomposite films were prepared by the thermo-compression and solvent-casting methods, and barrier properties (water-vapor and gas barrier) were evaluated. By introducing sepiolite into PLA, the properties of nanocomposite films improved until a certain amount (1.5% wt). By increasing sepiolite loading, nanoparticles tented to agglomerate and gas permeability (GP) decreased. According to the results, the nanocomposite films prepared by the thermo-compression method were more brittle but strong due to the formation of more crystals; while solvent-casted films were more ductile due to the presence of solvent, which may act as a plasticizer, as evidenced by the results of the GP.

RSC Advances ◽  
2016 ◽  
Vol 6 (4) ◽  
pp. 2530-2536 ◽  
Author(s):  
Sheng-Yang Zhou ◽  
Jing-Bin Chen ◽  
Xu-Juan Li ◽  
Xu Ji ◽  
Gan-Ji Zhong ◽  
...  

In this work, we creatively obtain high gas barrier poly(butylene succinate) (PBS)/clay nanocomposite films by introducing confined crystals taking advantage of the spatial confinement effect which commonly exists in polymer/nanofiller systems.


2019 ◽  
Vol 30 (7) ◽  
pp. 1709-1715 ◽  
Author(s):  
Chunli Fan ◽  
Hai Chi ◽  
Cheng Zhang ◽  
Rui Cui ◽  
Wangwei Lu ◽  
...  

e-Polymers ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 072-081
Author(s):  
Yujuan Qiu ◽  
Jirui Fu ◽  
Binqing Sun ◽  
Xiaojun Ma

Abstract Sustainable nanocomposites with transparent, biodegradable, and enhanced mechanical and barrier properties were prepared by the incorporation of SiO2 into poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) films and subsequent solvent casting. The crystallinity of composites could be increased by 67% with appropriate contents of SiO2, which proved that SiO2 were effective nucleating agents for PHBH. And it was worth mentioning that the contributions of SiO2 to the crystallization and thermal stability of composites are proved effectively by Avrami relationship and Horowitz and Metzger method. More importantly, compared with PHBH, it had not only an enhancement about 40% and 60% on the tensile strength and elastic modulus, respectively, but also half the reduction of the moisture and oxygen permeability which were much higher than the values of conventional plastics. The above, in conjunction with the low migration rate measured in food substitutes, illustrated unambiguously that the nanocomposites might be suitable for potential application in food packaging.


2016 ◽  
Vol 718 ◽  
pp. 10-14 ◽  
Author(s):  
Chuenkhwan Tipachan ◽  
Somjai Kajorncheappunngam

Nanocomposite films based on poly (lactic) acid (PLA) and organically nanoclay Perkalite were prepared by solvent casting method. The incorporation of Perkalite clay in PLA film was characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) techniques. Morphology of PLA/Perkalite film was investigated using scanning electron microscope (SEM). The gas barrier properties of PLA nanocomposite films were determined through oxygen transmission rate (OTR) and water vapor transmission rate (WVTR) measurement. Results from FTIR analysis indicates that Perkalite clay was incorporated in PLA film. SEM images show that dispersion of Perkalite particle on the PLA matrix was good with the additional of clay up to 3 pph (parts of clay per hundred part of PLA). The maximum reduction in OTR and WVTR of that nanocomposite film with Perkalite loading of 3 pph are 76% and 37%, respectively compared with neat PLA film. This proves that gas barrier property of PLA film is improved significantly with incorporation of Perkalite clay. The PLA/Perkalite nanocomposite film is a promising as green based packaging materials.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2346 ◽  
Author(s):  
Stanislav Kotsilkov ◽  
Evgeni Ivanov ◽  
Nikolay Vitanov

Nanoparticles of graphene and carbon nanotubes are attractive materials for the improvement of mechanical and barrier properties and for the functionality of biodegradable polymers for packaging applications. However, the increase of the manufacture and consumption increases the probability of exposure of humans and the environment to such nanomaterials; this brings up questions about the risks of nanomaterials, since they can be toxic. For a risk assessment, it is crucial to know whether airborne nanoparticles of graphene and carbon nanotubes can be released from nanocomposites into the environment at their end-life, or whether they remain embedded in the matrix. In this work, the release of graphene and carbon nanotubes from the poly(lactic) acid nanocomposite films were studied for the scenarios of: (i) biodegradation of the matrix polymer at the disposal of wastes; and (ii) combustion and fire of nanocomposite wastes. Thermogravimetric analysis in air atmosphere, transmission electron microscopy (TEM), atomic force microscopy (AFM) and scanning electron microscope (SEM) were used to verify the release of nanoparticles from nanocomposite films. The three factors model was applied for the quantitative and qualitative risk assessment of the release of graphene and carbon nanotubes from nanocomposite wastes for these scenarios. Safety concern is discussed in respect to the existing regulations for nanowaste stream.


RSC Advances ◽  
2018 ◽  
Vol 8 (68) ◽  
pp. 39083-39089 ◽  
Author(s):  
Se Jung Kim ◽  
Tan young Kim ◽  
Byung Hyun Kang ◽  
Gun-Hwan Lee ◽  
Byeong-Kwon Ju

Nanocomposites are potential substitutes for inorganic materials in fabricating flexible gas-barrier thin films.


Sign in / Sign up

Export Citation Format

Share Document