scholarly journals Sustainable nanocomposite films based on SiO2 and biodegradable poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) for food packaging

e-Polymers ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 072-081
Author(s):  
Yujuan Qiu ◽  
Jirui Fu ◽  
Binqing Sun ◽  
Xiaojun Ma

Abstract Sustainable nanocomposites with transparent, biodegradable, and enhanced mechanical and barrier properties were prepared by the incorporation of SiO2 into poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) films and subsequent solvent casting. The crystallinity of composites could be increased by 67% with appropriate contents of SiO2, which proved that SiO2 were effective nucleating agents for PHBH. And it was worth mentioning that the contributions of SiO2 to the crystallization and thermal stability of composites are proved effectively by Avrami relationship and Horowitz and Metzger method. More importantly, compared with PHBH, it had not only an enhancement about 40% and 60% on the tensile strength and elastic modulus, respectively, but also half the reduction of the moisture and oxygen permeability which were much higher than the values of conventional plastics. The above, in conjunction with the low migration rate measured in food substitutes, illustrated unambiguously that the nanocomposites might be suitable for potential application in food packaging.

2014 ◽  
Vol 695 ◽  
pp. 187-190
Author(s):  
Nima Moazeni ◽  
Zurina Mohamad ◽  
Nazila Dehbari

A biodegradable poly-lactic acid (PLA)/Sepiolite nanocomposite films were prepared by the thermo-compression and solvent-casting methods, and barrier properties (water-vapor and gas barrier) were evaluated. By introducing sepiolite into PLA, the properties of nanocomposite films improved until a certain amount (1.5% wt). By increasing sepiolite loading, nanoparticles tented to agglomerate and gas permeability (GP) decreased. According to the results, the nanocomposite films prepared by the thermo-compression method were more brittle but strong due to the formation of more crystals; while solvent-casted films were more ductile due to the presence of solvent, which may act as a plasticizer, as evidenced by the results of the GP.


2003 ◽  
Vol 791 ◽  
Author(s):  
Ajit Ranade ◽  
Nandika D'Souza ◽  
Bruce Gnade ◽  
Christopher Thellen ◽  
Caitlin Orroth ◽  
...  

ABSTRACTPolyethylene terephthalate glycol (PETG) is a clear amorphous polymer, which is extensively used in flexible packaging. The dual packaging requirements of recyclability and long-term shelf life are often difficult to achieve. Meeting these needs become more urgent when considering food packaging for large volumes of soldiers positioned in different parts of the world. Our approach is to develop a high barrier PET packaging system via the Montmorillonite layered silicate (MLS) based nano technology. Prior research has indicated the significant impact of the polymer crystalline regions on the properties of the resultant nanocomposite. Therefore we must first investigate the amorphous PETG. We must also investigate the influence of increased matrix polarity on dispersion of the PETG by incorporating maleic anhydride (MA) onto the PETG backbone. The influence of the clay concentration and maleation are independently investigated. The glass transition of the as-processed and annealed samples are analyzed using Differential Scanning Calorimetry (DSC) while the thermal stability is determined using Thermogravimetric Analysis (TGA). Testing showed a slight depression in the glass transition temperature of PETG film when the MLS is introduced into the system. The nanocomposite films also demonstrated a lower thermal stability in relation to the neat PETG films. The barrier properties were determined on an in-house built calibration unit based on atomic mobility under high vacuum. X-ray diffraction and TEM were utilized to determine the dispersion of the MLS in PETG. The results indicate that the dispersion was concentration independent but maleation of the PETG led to a slight decrease in agglomeration. An increased ultimate tensile strength and modulus was observed in PETG nanocomposites. The barrier properties were improved by incorporating the MLS into the system. Maleation of the PETG resulted in significant yellowing of the nanocomposites.


e-Polymers ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 038-046
Author(s):  
Xu Yan ◽  
Wanru Zhou ◽  
Xiaojun Ma ◽  
Binqing Sun

Abstract In this study, a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) modified with nano-montmorillonite biocomposite (MMT/PHBH) was fabricated by solution-casting method. The results showed that the addition of MMT increased the crystallinity and the number of spherulites, which indicated that MMT was an effective nucleating agent for PHBH. The maximum decomposition peak of the biocomposites moved to a high temperature and residue presented an increasing trend. The biocomposites showed the best thermal stability at 1 wt% MMT. Compared with PHBH, 182.5% and 111.2% improvement in elastic modulus and tensile strength were obtained, respectively. Moreover, the oxygen permeability coefficient and the water vapor permeability of MMT/PHBH biocomposites decreased by 43.9% and 6.9%, respectively. It was also found that the simultaneous enhancements on the crystallizing, thermal stability, mechanical, and barrier properties of biocomposites were mainly caused by the formation of intercalated structure between PHBH and MMT.


NANO ◽  
2021 ◽  
pp. 2150117
Author(s):  
Xu Li ◽  
Ying-Jun Zhang ◽  
Chi-Hui Tsou ◽  
Yi-Hua Wen ◽  
Chin-San Wu ◽  
...  

Since the inception of research on hollow silica, the use of hollow nanosilica (HNS) as additives in barrier materials has not been reported. In this study, we evaluated the capacity of HNS as an additive in modified polypropylene (MPP). According to X-ray diffraction (XRD), the crystallinity, tensile strength, and thermal stability of MPP/HNS nanocomposite containing 0.1[Formula: see text]phr HNS approached maximum values. Moreover, the nanocomposite had the best performance in terms of water vapor barrier and oxygen resistance. The reasons for the improvement in barrier performance were discussed. Scanning electron microscopy revealed that HNS at a low content dispersed well in MPP. In conclusion, the synthesized HNS can be used as an additive in barrier materials, and it would have potential applications in the fields of food packaging films and storage containers or materials.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2346 ◽  
Author(s):  
Stanislav Kotsilkov ◽  
Evgeni Ivanov ◽  
Nikolay Vitanov

Nanoparticles of graphene and carbon nanotubes are attractive materials for the improvement of mechanical and barrier properties and for the functionality of biodegradable polymers for packaging applications. However, the increase of the manufacture and consumption increases the probability of exposure of humans and the environment to such nanomaterials; this brings up questions about the risks of nanomaterials, since they can be toxic. For a risk assessment, it is crucial to know whether airborne nanoparticles of graphene and carbon nanotubes can be released from nanocomposites into the environment at their end-life, or whether they remain embedded in the matrix. In this work, the release of graphene and carbon nanotubes from the poly(lactic) acid nanocomposite films were studied for the scenarios of: (i) biodegradation of the matrix polymer at the disposal of wastes; and (ii) combustion and fire of nanocomposite wastes. Thermogravimetric analysis in air atmosphere, transmission electron microscopy (TEM), atomic force microscopy (AFM) and scanning electron microscope (SEM) were used to verify the release of nanoparticles from nanocomposite films. The three factors model was applied for the quantitative and qualitative risk assessment of the release of graphene and carbon nanotubes from nanocomposite wastes for these scenarios. Safety concern is discussed in respect to the existing regulations for nanowaste stream.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4910 ◽  
Author(s):  
Alejandro Aragón-Gutierrez ◽  
Marina P. Arrieta ◽  
Mar López-González ◽  
Marta Fernández-García ◽  
Daniel López

Bionanocomposites based on poly (lactic acid) (PLA) and silica aerogel (SiA) were developed by means of melt extrusion process. PLA-SiA composite films were plasticized with 15 wt.% of acetyl (tributyl citrate) (ATBC) to facilitate the PLA processability as well as to attain flexible polymeric formulations for films for food packaging purposes. Meanwhile, SiA was added in four different proportions (0.5, 1, 3 and 5 wt.%) to evaluate the ability of SiA to improve the thermal, mechanical, and barrier performance of the bionanocomposites. The mechanical performance, thermal stability as well as the barrier properties against different gases (carbon dioxide, nitrogen, and oxygen) of the bionanocomposites were evaluated. It was observed that the addition of 3 wt.% of SiA to the plasticized PLA-ATBC matrix showed simultaneously an improvement on the thermal stability as well as the mechanical and barrier performance of films. Finally, PLA-SiA film formulations were disintegrated in compost at the lab-scale level. The combination of ATBC and SiA sped up the disintegration of PLA matrix. Thus, the bionanocomposites produced here show great potential as sustainable polymeric formulations with interest in the food packaging sector.


2011 ◽  
Vol 284-286 ◽  
pp. 1778-1781 ◽  
Author(s):  
Zhe Zhou ◽  
Hou Yong Yu ◽  
Mei Fang Zhu ◽  
Zong Yi Qin

The composites of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with different microcrystalline cellulose (MCC) contents were prepared by a solvent casting method. The effects of MCC on the thermal properties of PHBV were studied by TGA and DSC. The DSC results showed that the melt crystallization temperature of the PHBV/MCC increased from 41.9 °C for PHBV to 59.8 °C for the composites containing 20 wt. % MCC, which indicated that the crystallization of PHBV became easier with the addition of MCC. It also illustrated that the MCC could be used as an effective nucleation agent for the crystallization of PHBV. Moreover, it was found that the thermal stability of the PHBV/MCC composites increased compared with the neat PHBV.


2002 ◽  
Vol 35 (9) ◽  
pp. 916-922 ◽  
Author(s):  
G T Fei ◽  
J P Barnes ◽  
A K Petford-Long ◽  
R C Doole ◽  
R Serna ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document