Manufacturing Process of Terahertz Radar Reflector Based on Ultra-Precision Machining Technology

2015 ◽  
Vol 713-715 ◽  
pp. 633-636
Author(s):  
Di Li ◽  
Song Bao Luo ◽  
Jian Ming Zhang ◽  
Chang Yu Xu ◽  
Chang Tao Pang

This paper presents a technique for processing Terahertz radar reflector by SPDT (Single Point Diamond Turning) based on LODTM (Large Optics Diamond Turning Machine). This technique applies single crystal diamond cutting tools for ultra-precision machining, and thus could obtain high-precision optical mirror, which could be used as the Terahertz radar reflectors. An experiment for aluminum sample had been done to demonstrate the availability of the technique, and a pair of Terahertz radar reflectors were obtained. The precision of the reflectors, detected through precision coordinate measuring technology, was better than the designed requirement. The experiment results showed that Terahertz radar reflectors generated by deterministic ultra-precision machining technique based on LODTM would have advantages in figure accuracy and roughness and so on, which could be helpful to improve the precision and low the cost of Terahertz radar system.

2010 ◽  
Vol 645-648 ◽  
pp. 853-856 ◽  
Author(s):  
Wolfgang J. Choyke ◽  
B. D'Urso ◽  
Fei Yan ◽  
Robert P. Devaty

Ultra-precision machining is dominated by single-crystal diamond cutting tools, and is typically applied to a narrow range of materials, particularly aluminum and copper. Single-crystal SiC can be comparable to some diamonds in hardness and thermal conductivity, while potentially having superior chemical and thermal stability, yet it has not been explored as a cutting tool for ultra-precision machining. We made two cutting tools with single-crystal SiC, one with sharp corners and one with a large circular radius, and used them to cut flat surfaces on two materials, 316 stainless steel and nickel. These materials generally cause unacceptably rapid diamond tool wear. We report the average roughness of the resulting surfaces cut with single-crystal 4H and 6H SiC tools.


2013 ◽  
Vol 378 ◽  
pp. 444-448
Author(s):  
Seung Yub Baek

Diffractive optical elements (DOE) can be used to simplify optical systems such as lightening its mass, reducing elements numbers and so on. Single-crystal diamond is considered as the preferred tool materials in ultra-precision and nanometer-scale cutting operation. Due to the well known and exceptional difficulty in shaping, the fabrication of diamond cutting tools requires special processing method. As a highly efficient and cost-effective solution, the mechanical lapping process has been extensively applied in tool-making industry. In this paper, the key enabling technologies to design and fabricate the diamond-cutting tools for ultra-precision and submicronic machining are presented and reviewed. The paper describes the shape of micro cutting tool that is based on the finite element method of calculation of relief angle and rake angle.


2007 ◽  
Vol 364-366 ◽  
pp. 544-549
Author(s):  
Ming Chu Kong ◽  
Wing Bun Lee ◽  
Chi Fai Cheung ◽  
Suet To

The formation of tool marks in single-point diamond turning is a fundamental study of the effect of materials swelling and recovery on surface roughness on a machined surface. A series of orthogonal face cutting tests has been conducted among plate aluminum alloy, oxygen-free high conductivity copper and electroless nickel phosphorus under the same cutting conditions by the use of facet tools with different front clearance angles. The results show that the regular width of the undulating pattern in tool marks could be explained by side swelling and the micro-waviness within a tool mark is caused by burnishing and recovery.


2020 ◽  
pp. 2150067
Author(s):  
Ning Chen ◽  
Guoqing Zhang ◽  
Menghua Zhou ◽  
Gang Xu ◽  
Yong Li ◽  
...  

In this study, type Ib, type IIa, and type IIb synthetic diamonds tools were used for the ultra-precision machining (UPM) of copper. Raman spectroscopy showed that the diamond cutting tools used in these experiments exhibited high-quality sp3 structure and little residual stress in the diamond lattice. Type IIb diamond cutting tools showed higher durability and better UPM performance than the other types of diamond cutting tools. Chemical wear was deemed significant with respect to the cutting tools’ wear in this UPM experiment. Higher durability and enhanced UPM performance could be attributed to the higher thermal and chemical stabilities of the type IIb diamond cutting tool.


2012 ◽  
Vol 523-524 ◽  
pp. 81-86 ◽  
Author(s):  
Yuya Kobaru ◽  
Eiji Kondo ◽  
Ryuichi Iwamoto

A lot of studies on the ultra-precision cutting of single crystal silicon have been reported and they used the single crystal diamond cutting tools having the sharp cutting edge. However, the diamond cutting tools having small chamfer at the cutting edge are usually used in practical machining shops. In addition, studies on the relationship between the tool wear and the machined surface have been reported little although the relationship is important in practical applications. In this study, ultra-precision cutting of single crystal silicon, using cutting fluids, feed rate, and depth of cut as experimental parameters, were carried out by using the single crystal diamond cutting tools having small chamfer and large nose radius, and effects of the cutting fluids, the feed rate, and the depth of cut on the machining accuracy and tool wear were studied. As a result, the optimum cutting conditions was obtained as follows: the cutting fluid was kerosene, the feed rate was 2.0μm/rev, and the depth of cut was 1.0μm.


Sign in / Sign up

Export Citation Format

Share Document