Ultra-Precision Cutting of Single Crystal Silicon Using Diamond Tool with Large Top Corner Radius

2012 ◽  
Vol 523-524 ◽  
pp. 81-86 ◽  
Author(s):  
Yuya Kobaru ◽  
Eiji Kondo ◽  
Ryuichi Iwamoto

A lot of studies on the ultra-precision cutting of single crystal silicon have been reported and they used the single crystal diamond cutting tools having the sharp cutting edge. However, the diamond cutting tools having small chamfer at the cutting edge are usually used in practical machining shops. In addition, studies on the relationship between the tool wear and the machined surface have been reported little although the relationship is important in practical applications. In this study, ultra-precision cutting of single crystal silicon, using cutting fluids, feed rate, and depth of cut as experimental parameters, were carried out by using the single crystal diamond cutting tools having small chamfer and large nose radius, and effects of the cutting fluids, the feed rate, and the depth of cut on the machining accuracy and tool wear were studied. As a result, the optimum cutting conditions was obtained as follows: the cutting fluid was kerosene, the feed rate was 2.0μm/rev, and the depth of cut was 1.0μm.

Author(s):  
Jinyang Ke ◽  
Xiao Chen ◽  
Jianguo Zhang ◽  
Changlin Liu ◽  
Guoqing Xu ◽  
...  

Abstract Laser-assisted diamond cutting is a promising process for machining hard and brittle materials. A deep knowledge of material removal mechanism and attainable surface integrity are crucial to the development of this new technique. This paper focuses on the application of laser-assisted diamond cutting to single crystal silicon to investigate key characteristics of this process. The influence of laser power on the ductile machinability of single crystal silicon, in terms of the critical depth of cut for ductile-brittle transition in laser-assisted diamond cutting, is investigated quantitatively using a plunge-cut method. The experimental results reveal that this process can enhance the silicon’s ductility and machinability. The critical depth of cut has been increased by up to 330% with laser assistance, and its degree generally increases with the increase of laser power. The cross-sectional transmission electron microscope observation results indicate that laser-assisted diamond cutting is able to realize the subsurface damage free processing of single crystal silicon. In order to verify the ability of the laser-assisted diamond cutting to improve the surface quality, the face turning tests are also carried out. A significant improvement of surface quality has been obtained by laser-assisted diamond cutting: Sz (maximum height) has been reduced by 85% and Sa (arithmetical mean height) has been reduced by 45%.


2013 ◽  
Vol 378 ◽  
pp. 444-448
Author(s):  
Seung Yub Baek

Diffractive optical elements (DOE) can be used to simplify optical systems such as lightening its mass, reducing elements numbers and so on. Single-crystal diamond is considered as the preferred tool materials in ultra-precision and nanometer-scale cutting operation. Due to the well known and exceptional difficulty in shaping, the fabrication of diamond cutting tools requires special processing method. As a highly efficient and cost-effective solution, the mechanical lapping process has been extensively applied in tool-making industry. In this paper, the key enabling technologies to design and fabricate the diamond-cutting tools for ultra-precision and submicronic machining are presented and reviewed. The paper describes the shape of micro cutting tool that is based on the finite element method of calculation of relief angle and rake angle.


2010 ◽  
Vol 97-101 ◽  
pp. 4096-4099 ◽  
Author(s):  
Yi Qing Chen ◽  
Liang Chi Zhang

This paper investigates the polishing of single crystal diamond using the dynamic friction method. It was found that by selecting a proper polishing pressure and sliding speed, a very high polishing rate at 10,300 µm/h (or 2.8 X 10-2 mg/s) with a high quality surface finish can be reached, which is hundreds times faster than the other polishing process reported in the literature. This method can be used to manufacture diamond products and to repair worn diamond components such as diamond cutting tools and diamond dressers for grinding wheels.


2010 ◽  
Vol 645-648 ◽  
pp. 853-856 ◽  
Author(s):  
Wolfgang J. Choyke ◽  
B. D'Urso ◽  
Fei Yan ◽  
Robert P. Devaty

Ultra-precision machining is dominated by single-crystal diamond cutting tools, and is typically applied to a narrow range of materials, particularly aluminum and copper. Single-crystal SiC can be comparable to some diamonds in hardness and thermal conductivity, while potentially having superior chemical and thermal stability, yet it has not been explored as a cutting tool for ultra-precision machining. We made two cutting tools with single-crystal SiC, one with sharp corners and one with a large circular radius, and used them to cut flat surfaces on two materials, 316 stainless steel and nickel. These materials generally cause unacceptably rapid diamond tool wear. We report the average roughness of the resulting surfaces cut with single-crystal 4H and 6H SiC tools.


2005 ◽  
Vol 291-292 ◽  
pp. 331-336
Author(s):  
Wen Jun Zong ◽  
Dan Li ◽  
H.X. Wang ◽  
T. Sun ◽  
K. Cheng ◽  
...  

In order to avoid the stochastic damage of micro cleavage on cutting edge, a brittle-ductile transition lapping mechanism is proposed for the mechanical lapping of single crystal diamond cutting tools to direct the tools lapping. As expected, the critical depths of cut for brittle-ductile transition in different orientations and on different crystal planes are calculated. According to the theoretical results, the actual dynamic depth of cut is controlled within the critical depth of cut, which ensures that the tool lapping is carried out in ductile regime and the changes of cutting edge radius characterize with some specific time laws in lapping. Therefore, the time series and nonlinear least square methods are used to analyze the changing laws of cutting edge radius. As a result, a coupled model to build a bridge between the cutting edge radius changes and lapping time is developed. In terms of this developed model, a required cutting edge radius restricts a tool’s lapping time. Above all, the cutting edge radius is known in advance and has no needs measuring. So the production efficiency of diamond cutting tools is improved and its production cost is reduced accordingly.


2021 ◽  
Author(s):  
Lianmin Yin ◽  
Yifan Dai ◽  
Hao Hu

Abstract In order to obtain ultra-smooth surfaces of single-crystal silicon in ultra-precision machining, an accurate study of the deformation mechanism, mechanical properties, and the effect of oxide film under load is required. The mechanical properties of single-crystal silicon and the phase transition after nanoindentation experiments are investigated by nanoindentation and Raman spectroscopy, respectively. It is found that pop-in events appear in the theoretical elastic domain of single-crystal silicon due to the presence of oxide films, which directly leads the single crystal silicon from the elastic deformation zone into the plastic deformation zone. In addition, the mechanical properties of single-crystal silicon are more accurately measured after it has entered the full plastic deformation.


2012 ◽  
Vol 576 ◽  
pp. 46-50 ◽  
Author(s):  
M.A. Mahmud ◽  
A.K.M. Nurul Amin ◽  
M.D. Arif

This paper presents the thorough experimental analysis on high speed end milling of single crystal silicon using diamond coated tools. Experiments were conducted on CNC milling machine. The design of the experiments was based on the central composite design (CCD) technique of Design Expert software. Response Surface Methodology (RSM) was used to develop mathematical imperial model to establish a correlation between machining parameters (cutting speed, feed and depth of cut) and machined surface roughness in high speed end milling of single crystal silicon using 2mm diameter diamond coated tools. The optimum machining parameters were determined using the optimization tool of Design Expert software based on the desirability function. Finally, confirmation tests were performed to validate the developed model.


Sign in / Sign up

Export Citation Format

Share Document